Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Nanoscale 3D cellular imaging by axial scanning transmission electron tomography

Abstract

Electron tomography provides three-dimensional structural information about supramolecular assemblies and organelles in a cellular context, but image degradation, caused by scattering of transmitted electrons, limits applicability in specimens thicker than 300 nm. We found that scanning transmission electron tomography of 1,000-nm-thick samples using axial detection provided resolution comparable to that of conventional electron tomography. We demonstrated the method by reconstructing a human erythrocyte infected with the malaria parasite Plasmodium falciparum.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STEM using axial detection.
Figure 2: Bright-field STEM analysis of 1-μm-thick C. reinhardtii.
Figure 3: The 3D ultrastructure of a human erythrocyte infected with P. falciparum.

Similar content being viewed by others

References

  1. Baumeister, W. FEBS Lett. 579, 933–937 (2005).

    Article  CAS  Google Scholar 

  2. Hoenger, A. & McIntosh, J.R. Curr. Opin. Cell Biol. 21, 89–96 (2009).

    Article  CAS  Google Scholar 

  3. Aoyama, K., Takagi, T., Hirase, A. & Miyazawa, A. Ultramicroscopy 109, 70–80 (2008).

    Article  CAS  Google Scholar 

  4. Bannister, L.H., Hopkins, J.M., Fowler, R.E., Krishna, S. & Mitchell, G.H. Parasitol. Today 16, 427–433 (2000).

    Article  CAS  Google Scholar 

  5. Henderson, G.P., Gan, L. & Jensen, G.J. PLoS One 2, e749 (2007).

    Article  Google Scholar 

  6. Marsh, B.J. Methods Cell Biol. 79, 193–220 (2007).

    Article  CAS  Google Scholar 

  7. Bouwer, J.C. et al. J. Struct. Biol. 148, 297–306 (2004).

    Article  CAS  Google Scholar 

  8. Ziese, U., Kübel, C., Verkleij, A.J. & Koster, A.J. J. Struct. Biol. 138, 58–62 (2002).

    Article  CAS  Google Scholar 

  9. Batson, P.E., Dellby, N. & Krivanek, O.L. Nature 418, 617–620 (2002).

    Article  CAS  Google Scholar 

  10. Hyun, J.K., Ercius, P. & Muller, D.A. Ultramicroscopy 109, 1–7 (2008).

    Article  CAS  Google Scholar 

  11. Gentsch, P., Gilde, H. & Reimer, L. J. Microsc. 100, 81–92 (1974).

    Article  Google Scholar 

  12. Sousa, A.A., Hohmann-Marriott, M.F., Zhang, G. & Leapman, R.D. Ultramicroscopy 109, 213–221 (2009).

    Article  CAS  Google Scholar 

  13. van Dooren, G.G. et al. Mol. Microbiol. 57, 405–419 (2005).

    Article  CAS  Google Scholar 

  14. Marsh, B.J., Mastronarde, D.N., Buttle, K.F., Howell, K.E. & McIntosh, J.R. Proc. Natl. Acad. Sci. USA 98, 2399–2406 (2001).

    Article  CAS  Google Scholar 

  15. Höög, J.L. et al. Dev. Cell 12, 349–361 (2007).

    Article  Google Scholar 

  16. Glushakova, S. et al. Cell. Microbiol. 11, 95–105 (2009).

    Article  CAS  Google Scholar 

  17. Reimer, L. & Ross-Messemer, M. Ultramicroscopy 21, 385–388 (1987).

    Article  CAS  Google Scholar 

  18. Weyland, M. & Muller, D.A. Nanosolutions 1, 24–35 (2005).

    Google Scholar 

  19. McEwen, B.F. & Marko, M. J. Histochem. Cytochem. 49, 553–564 (2001).

    Article  CAS  Google Scholar 

  20. Koster, A.J. et al. J. Struct. Biol. 120, 276–308 (1997).

    Article  CAS  Google Scholar 

  21. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Programs of the National Institute of Biomedical Imaging and Bioengineering, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health. We thank T. Reese for help with the freeze-substitution technique. M.F.H.-M. acknowledges support through the Joint National Institute of Standards and Technology–National Institute of Biomedical Imaging and Bioengineering Postdoctoral Associateship program of the US National Research Council.

Author information

Authors and Affiliations

Authors

Contributions

M.F.H.-M. and A.A.S. conceived the project, designed and performed experiments, processed and analyzed data and wrote the paper. A.A.A. processed and analyzed data. G.Z. prepared specimens for electron microscopy. S.G. and J.Z. provided samples of P. falciparum–infected erythrocytes, analyzed data and contributed to writing the paper. R.D.L. coordinated the project, designed experiments, analyzed data and wrote the paper.

Corresponding authors

Correspondence to Alioscka A Sousa or Richard D Leapman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Discussion 1–2 (PDF 12187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohmann-Marriott, M., Sousa, A., Azari, A. et al. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Methods 6, 729–731 (2009). https://doi.org/10.1038/nmeth.1367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing