Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Enzymatic assembly of DNA molecules up to several hundred kilobases

Abstract

We describe an isothermal, single-reaction method for assembling multiple overlapping DNA molecules by the concerted action of a 5′ exonuclease, a DNA polymerase and a DNA ligase. First we recessed DNA fragments, yielding single-stranded DNA overhangs that specifically annealed, and then covalently joined them. This assembly method can be used to seamlessly construct synthetic and natural genes, genetic pathways and entire genomes, and could be a useful molecular engineering tool.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: One-step isothermal in vitro recombination.
Figure 2: Examples of the one-step isothermal assembly method.

Similar content being viewed by others

References

  1. Gellert, M. Proc. Natl. Acad. Sci. USA 57, 148–155 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith, H.O. & Wilcox, K.W. J. Mol. Biol. 51, 379–391 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. Shetty, R.P., Endy, D. & Knight, T.F. Jr. J. Biol. Eng. 2, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yount, B., Denison, M.R., Weiss, S.R. & Baric, R.S. J. Virol. 76, 11065–11078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Horton, R.M., Cai, Z.L., Ho, S.N. & Pease, L.R. Biotechniques 8, 528–535 (1990).

    CAS  PubMed  Google Scholar 

  6. Horton, R.M. Mol. Biotechnol. 3, 93–99 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Bang, D. & Church, G.M. Nat. Methods 5, 37–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Geu-Flores, F., Nour-Eldin, H.H., Nielsen, M.T. & Halkier, B.A. Nucleic Acids Res. 35, e55 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aslanidis, C. & de Jong, P.J. Nucleic Acids Res. 18, 6069–6074 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, M.Z. & Elledge, S.J. Nat. Methods 4, 251–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Gibson, D.G. et al. Science 319, 1215–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Sayers, J.R. & Eckstein, F. J. Biol. Chem. 265, 18311–18317 (1990).

    CAS  PubMed  Google Scholar 

  13. Sheng, Y., Mancino, V. & Birren, B. Nucleic Acids Res. 23, 1990–1996 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Endy, D. Nature 438, 449–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Drubin, D.A., Way, J.C. & Silver, P.A. Genes Dev. 21, 242–254 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Lartigue, C., Duret, S., Garnier, M. & Renaudin, J. Plasmid 48, 149–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Henikoff, S. Gene 28, 351–359 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Hutchison, C.A., III, Smith, H.O., Pfannkoch, C. & Venter, J.C. Proc. Natl. Acad. Sci. USA 102, 17332–17336 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Science (Biological and Environmental Research) United States Department of Energy grant number DE-FG02-02ER63453, and Synthetic Genomics, Inc.

Author information

Authors and Affiliations

Authors

Contributions

D.G.G., L.Y., R.-Y.C., J.C.V., C.A.H. and H.O.S. designed research; D.G.G., L.Y., R.-Y.C., C.A.H. and H.O.S. performed research; D.G.G., L.Y., R.-Y.C., J.C.V., C.A.H. and H.O.S. analyzed data; and D.G.G., C.A.H. and H.O.S. wrote the paper.

Corresponding author

Correspondence to Daniel G Gibson.

Ethics declarations

Competing interests

J.C.V is chief executive officer and co-chief scientific officer of Synthetic Genomics, Inc (SGI), a privately held entity that develops genomic-driven strategies to address global energy and environmental challenges. H.O.S. is co-chief scientific officer and a member of the board of directors of SGI. C.A.H. is chairman of the SGI scientific advisory board. All three of these authors hold SGI stock.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–2, Supplementary Results (PDF 2997 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, D., Young, L., Chuang, RY. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343–345 (2009). https://doi.org/10.1038/nmeth.1318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing