Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes

Abstract

Single-walled carbon nanotubes (SWNTs) have strong potential for molecular electronics, owing to their unique structural and electronic properties. However, various outstanding issues still need to be resolved before SWNT-based devices can be made. In particular, large-scale, air-stable and controlled doping is highly desirable. Here we present a method for integrating organic molecules into SWNTs that promises to push the performance limit of these materials for molecular electronics. Reaction of SWNTs with molecules having large electron affinity and small ionization energy achieved p- and n-type doping, respectively. Optical characterization revealed that charge transfer between SWNTs and molecules starts at certain critical energies. X-ray diffraction experiments revealed that molecules are predominantly encapsulated inside SWNTs, resulting in an improved stability in air. The simplicity of the synthetic process offers a viable route for the large-scale production of SWNTs with controlled doping states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: XRD pattern, TEM image and a structure model of organic/SWNT materials.
Figure 3: Optical spectra of pristine SWNTs and K-doped SWNT (KC27).
Figure 4: Raman spectra of pristine SWNT, and anthracene-, TCNQ- and TDAE-doped SWNTs.
Figure 5: Relationship between the absorption intensity and ionization energy or electron affinity of molecules in Table 1.

Similar content being viewed by others

References

  1. Dresselhaus, M.S., Dresselhaus, G. & Avouris, P. (eds.) Carbon Nanotubes (Spring, Berlin, 2001).

    Book  Google Scholar 

  2. Franklin, N.R. et al. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Appl. Phys. Lett. 81, 913–915 (2002).

    Article  CAS  Google Scholar 

  3. Fuhrer, M.S., Kim, B.M., Dürkop, T. & Brintlinger, T. High-mobility nanotube transistor memory. Nano Lett. 2, 755–759 (2002).

    Article  CAS  Google Scholar 

  4. Liang, W. et al. Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    Article  CAS  Google Scholar 

  5. Kong, J. et al. Quantum interference and ballistic transmission in nanotube electron wave-guides. Phys. Rev. Lett. 87, 106801 (2001).

    Article  CAS  Google Scholar 

  6. Javey, A. et al. High-κ dielectrics for advanced carbonnanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002).

    Article  CAS  Google Scholar 

  7. Heinze, S. et al. Carbon nanotubes as schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article  CAS  Google Scholar 

  8. Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 80, 2773–2774 (2002).

    Article  CAS  Google Scholar 

  9. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    Article  CAS  Google Scholar 

  10. Collins, P., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000).

    Article  CAS  Google Scholar 

  11. Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 106801 (2001).

    Article  Google Scholar 

  12. Zhou, C., Kong, J., Yenilmez, E. & Dai, H. Modulated chemical doping of individual carbon nanotubes. Science 290, 1552–1555 (2000).

    Article  CAS  Google Scholar 

  13. Kazaoui, S., Minami, N., Jacquemin, R., Kataura, H. & Achiba, Y. Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy. Phys. Rev. B 60, 13339–13342 (1999).

    Article  CAS  Google Scholar 

  14. Kazaoui, S., Minami, N., Matsuda, N., Kataura, H. & Achiba, Y. Electrochemical tuning of electronic states in single-wall carbon nanotubes studied by in situ absorption spectroscopy and ac resistance. Appl. Phys. Lett. 78, 3433–3435 (2001).

    Article  CAS  Google Scholar 

  15. Jouguelet, E., Mathis, C. & Petit, P. Controlling the electronic properties of single-wall carbon nanotubes by chemical doping. Chem. Phys. Lett. 318, 561–564 (2000).

    Article  CAS  Google Scholar 

  16. Kong, J. & Dai, H. Full and modulated chemical gating of individual carbon nanotubes by organic amine. J. Phys. Chem. B 105, 2890–2893 (2001).

    Article  CAS  Google Scholar 

  17. Shim, M., Javey, A., Kam, N.W.S. & Dai, H. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc. 123, 11512–11513 (2001).

    Article  CAS  Google Scholar 

  18. Lee, J. et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 415, 1005–1008 (2002).

    Article  CAS  Google Scholar 

  19. Hornbaker, D.J. et al. Mapping the one-dimensional peapod structures. Science 295, 828–831 (2002).

    Article  CAS  Google Scholar 

  20. Kataura, H. et al. Optical properties of fullerene and non-fullerene peapods. Appl. Phys. A 74, 1–6 (2002).

    Article  Google Scholar 

  21. Shiraishi, M., Takenobu, T., Yamada, A., Ata, M. & Kataura, H. Hydrogen storage in single-walled carbon nanotube bundles and peapods. Chem. Phys. Lett. 358, 213–218 (2002).

    Article  CAS  Google Scholar 

  22. Maniwa, Y. et al. Anomaly of x-ray diffraction profile in single-walled carbon nanotubes. Jpn J. Appl. Phys. 38, L668–L670 (1999).

    Article  CAS  Google Scholar 

  23. Seki, N. Ionization energies of free molecules and molecular solids. Mol. Cryst. Liq. Cryst. 171, 255–270 (1989).

    Google Scholar 

  24. Smith, B.W., Monthioux, M. & Luzzi, D.E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–323 (1998).

    Article  CAS  Google Scholar 

  25. Morgan, D.A., Sloan, J. & Green, M.L.H. Direct imaging of o-carborane molecules with single walled carbon nanotubes. Chem. Comm. 20, 2442–2443 (2002).

    Article  Google Scholar 

  26. Rao, A.M., Eklund, P.C., Bandow, S., Thess, A. & Smalley, R.E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257–259 (1997).

    Article  CAS  Google Scholar 

  27. Iwasa, Y. et al. Intercalation processes of single-walled carbon nanotube ropes. New Diam. Front. C. Tec. 12, 325–330 (2002).

    CAS  Google Scholar 

  28. Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999).

    Article  CAS  Google Scholar 

  29. Matsuzaki, S., Kawata, R. & Toyoda, K. Raman spectra of conducting TCNQ salt; estimation of the degree of charge transfer from vibrational frequencies. Solid State Commun. 33, 403–405 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Maruyama for experimental help, and to T. Hasegawa for his provision of purified organic molecules. This work has been partly supported by a grant from the MEXT, Japan (13440110 and 14750019). The synchrotron radiation experiments were performed at SPring-8, Japan, with the approval of JASRI as Nanotechnology Support Project of The MEXT. (Proposal No. 2002B0210-ND1-np/BL-No.02B2 and 2003A0323-ND1-np/BL-No.02B2)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taishi Takenobu or Yoshihiro Iwasa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. S1

Supplementary Fig. S2 (PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takenobu, T., Takano, T., Shiraishi, M. et al. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nature Mater 2, 683–688 (2003). https://doi.org/10.1038/nmat976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat976

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing