Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative

Abstract

Electronic polymers in aqueous media may offer bioelectronic detection of biospecific interactions. Here we report a fluorometric DNA hybridization detection method based on non-covalent coupling of DNA to a water-soluble zwitterionic polythiophene derivative. Introduction of a single-stranded oligonucleotide will induce a planar polymer and aggregation of the polymer chains, detected as a decrease of the intensity and a red-shift of the fluorescence. On addition of a complementary oligonucleotide, the intensity of the emitted light is increased and blue-shifted. The detection limit of this method is at present 10−11 moles. The method is highly sequence specific, and a single-nucleotide mismatch can be detected within five minutes without using any denaturation steps. The interaction with DNA and the optical phenomena persists when the polymer is deposited and patterned on a surface. This offers a novel way to create DNA chips without using covalent attachment of the receptor or labelling of the analyte.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absorption and emission data for POWT/DNA complexes.
Figure 2: The formation of POWT/DNA complexes.
Figure 3: Circular dichroism spectra of POWT/DNA complexes.
Figure 4: Fluorescence images of POWT/DNA complexes.

Similar content being viewed by others

References

  1. Korri-Youssoufi, H., Garnier, F., Srivastava, P., Godillot, P. & Yassar, A. Toward bioelectronics: Specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J. Am. Chem. Soc. 119, 7388–7389 ( 1997).

    Article  CAS  Google Scholar 

  2. Faïd, K. & Leclerc, M. Responsive supramolecular polythiophene assemblies. J. Am. Chem. Soc. 120, 5274–5278 ( 1998).

    Article  Google Scholar 

  3. Baek, M., Stevens, R.C. & Charych, D.H. Design and synthesis of novel glycopolythiophene assemblies for colorimetric detection of influenza virus and E. coli. Bioconjugate Chem. 11, 777–788 ( 2000).

    Article  CAS  Google Scholar 

  4. Kumpumbu-Kalemba, L. & Leclerc, M. Electrochemical characterization of monolayers of a biotinylated polythiophene: towards the development of polymeric biosensors. Chem. Commun. 1847–1848 ( 2000).

  5. Heeger, P.S. & A.J. Heeger, Making sense of polymer-based biosensors. Proc. Natl Acad. Sci. USA 96, 12219–12221 ( 1999).

    Article  CAS  Google Scholar 

  6. Wang, J. et. al. Photoluminescence of water-soluble conjugated polymers: origin of enhanced quenching by charge transfer. Macromolecules 33, 5153–5158 ( 2000).

    Article  CAS  Google Scholar 

  7. Wang, D. et. al. Biosensors from conjugated polyelectrolyte complexes. Proc. Natl Acad. Sci. USA 99, 49–53 ( 2002).

    Article  CAS  Google Scholar 

  8. Fodor, S.P. et. al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 ( 1991).

    Article  CAS  Google Scholar 

  9. Livache, T. et. al. Preparation of a DNA matrix via an electrochemically directed copolymerization of polypyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Res. 22, 2915–2921 ( 1994).

    Article  CAS  Google Scholar 

  10. Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308 ( 1996).

    Article  CAS  Google Scholar 

  11. Millan, K.M. & Mikkelsen, S.R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal. Chem. 65, 2317–2323 ( 1993).

    Article  CAS  Google Scholar 

  12. Taton, T.A., Mirkin, C.A. & Letsinger, R.L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 ( 2000).

    Article  CAS  Google Scholar 

  13. Leclerc, M. Optical and electrochemical transducers based on functionalized conjugated polymers. Adv. Mater. 11, 1491–1498 ( 1999).

    Article  CAS  Google Scholar 

  14. McQuade, D.T., Pullen, A.E. & Swager, T.M. Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 ( 2000).

    Article  CAS  Google Scholar 

  15. Chen, L. et. al. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc. Natl Acad. Sci. USA 96, 12287–12292 ( 1999).

    Article  CAS  Google Scholar 

  16. Ewbank, P.C., Nuding, G., Suenaga, H., McCullough, R.D. & Shinkai, S. Amine functionalized polythiophenes: synthesis and formation of chiral, ordered structures on DNA substrates. Tetrahedron Lett. 42, 155–157 ( 2001).

    Article  CAS  Google Scholar 

  17. Bäuerle P. & Emge, A. Specific recognition of nucleobase-functionalized polythiophenes. Adv. Mater. 10, 324–330 ( 1998).

    Article  Google Scholar 

  18. Garnier, F. et al. Toward intelligent polymers: DNA sensors based on oligonucleotide-functionalized polypyrroles. Synthetic Met. 100, 89–94 ( 1999).

    Article  CAS  Google Scholar 

  19. Korri-Youssoufi, H. & Yassar, A. Electochemical probing of DNA based on oligonucleotide-functionalized polypyrrole. Biomacromolecules 2, 58–64 ( 2001).

    Article  CAS  Google Scholar 

  20. Ho, H.-A. et. al. Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew. Chem. Int. Edn Engl. 41, 1548–1551 ( 2002).

    Article  CAS  Google Scholar 

  21. Andersson, M., Ekeblad, P.O., Hjertberg, T., Wennerström, O. & Inganäs, O. Polythiophene with a free amino acid side chain. Polym. Commun. 32, 546–548 ( 1991).

    CAS  Google Scholar 

  22. Berggren, M. et. al. Controlling the inter-chain and intra-chain excitations of a poly(thiophene) derivative in thin films. Chem. Phys. Lett. 304, 84–90 ( 1999).

    Article  CAS  Google Scholar 

  23. Nilsson, K.P.R., Andersson, M.R. & Inganäs, O. Conformational transitions of a free amino acid functionalized polythiophene induced by different buffer systems. J. Phys. Condens. Matter 14, 10011–10020 ( 2002).

    Article  CAS  Google Scholar 

  24. Yashima, E., Matsushima, T. & Okamoto, Y. Chirality assignment of amines and amino alcohols based on circular dichroism induced by helix formation of a stereoregular poly((4-carboxyphenyl)acetylene) through acid-base complexation. J. Am. Chem. Soc. 119, 6345–6359 ( 1997).

    Article  CAS  Google Scholar 

  25. Yashima, E., Goto, H. & Okamoto, Y. Metal-induced chirality induction and chiral recognition of optically active, regioregular polythiophenes. Macromolecules 32, 7942–7945 ( 1999).

    Article  CAS  Google Scholar 

  26. Ivanov, V.I., Minchenkova, L.E., Minyat, E.E., Frank-Kamenetski, M.D. & Schyolkina, A.K. The B to A transition of DNA in solution. J. Mol. Biol. 87, 817–833 ( 1974).

    Article  CAS  Google Scholar 

  27. Keller, G.H. & Manak, M.M. DNA Probes (Stockton, New York, 1989).

    Google Scholar 

  28. Park, S.-J., Taton, T.A. & Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506 ( 2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mats R. Andersson and co-workers, Chalmers University, Sweden, for synthesis of the POWT. We wish to thank Xiangjun Wang for help in the studies of time evolution of photoluminescence in an integrating sphere, and Marilla Lilja for her contributions to microcontact printing of polymers. Per Björk and Gustav Axehult contributed to development of chip-based methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Peter R. Nilsson.

Ethics declarations

Competing interests

There is a patent application concerning the technique described in the article.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, K., Inganäs, O. Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. Nature Mater 2, 419–424 (2003). https://doi.org/10.1038/nmat899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing