Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2

Abstract

Atomically thin two-dimensional crystals have revolutionized materials science1,2,3. In particular, monolayer transition metal dichalcogenides promise novel optoelectronic applications, owing to their direct energy gaps in the optical range4,5,6,7,8,9. Their electronic and optical properties are dominated by Coulomb-bound electron–hole pairs called excitons10,11,12,13,14,15,16,17,18, whose unusual internal structure13, symmetry15,16,17, many-body effects18 and dynamics have been vividly discussed. Here we report the first direct experimental access to all 1s A excitons, regardless of momentum—inside and outside the radiative cone—in single-layer WSe2. Phase-locked mid-infrared pulses reveal the internal orbital 1s–2p resonance, which is highly sensitive to the shape of the excitonic envelope functions and provides accurate transition energies, oscillator strengths, densities and linewidths. Remarkably, the observed decay dynamics indicates an ultrafast radiative annihilation of small-momentum excitons within 150 fs, whereas Auger recombination prevails for optically dark states. The results provide a comprehensive view of excitons and introduce a new degree of freedom for quantum control, optoelectronics and valleytronics of dichalcogenide monolayers19,20,21,22,23,24.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intra- and interband spectroscopy of single-layer WSe2.
Figure 2: Time-resolved response of the intra-excitonic 1s–2p transition.
Figure 3: Density-dependent renormalization of the internal excitonic response.
Figure 4: Ultrafast dynamics of exciton density in single-layer WSe2.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photon. 8, 899–907 (2014).

    Article  CAS  Google Scholar 

  3. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  4. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  5. Splendiani, A. et al. Emerging Photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  6. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

    Article  Google Scholar 

  7. Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2 . Opt. Express 21, 4908–4916 (2013).

    Article  CAS  Google Scholar 

  8. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780–793 (2014).

    Article  CAS  Google Scholar 

  9. Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  Google Scholar 

  10. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013).

    Article  CAS  Google Scholar 

  11. He, K. et al. Tightly bound excitons in monolayer WSe2 . Phys. Rev. Lett. 113, 026803 (2014).

    Article  Google Scholar 

  12. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Mater. 13, 1091–1095 (2014).

    Article  CAS  Google Scholar 

  13. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  14. Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    Article  CAS  Google Scholar 

  15. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).

    Article  Google Scholar 

  16. Stroucken, T. & Koch, S. W. Optically bright p-excitons indicating strong Coulomb coupling in transition-metal dichalcogenides. Preprint at http://arxiv.org/abs/1404.4238 (2014)

  17. Berghäuser, G. & Malic, E. Analytical approach to excitonic properties of MoS2 . Phys. Rev. B 89, 125309 (2014).

    Article  Google Scholar 

  18. Kumar, N. et al. Exciton–exciton annihilation in MoSe2 monolayers. Phys. Rev. B 89, 125427 (2014).

    Article  Google Scholar 

  19. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  20. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  21. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  Google Scholar 

  22. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    Article  CAS  Google Scholar 

  23. Yuan, H. et al. Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2 . Nature Nanotech. 9, 851–857 (2014).

    Article  CAS  Google Scholar 

  24. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

    Article  CAS  Google Scholar 

  25. Wang, G. et al. Gaint enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

    Article  CAS  Google Scholar 

  26. Wang, H. et al. Radiative lifetimes of excitons and trions in monolayers of metal dichalcogenide MoS2. Preprint at http://arxiv.org/abs/1409.3996 (2014)

  27. Lui, C. H. et al. Trion-induced negative photoconductivity in monolayer MoS2 . Phys. Rev. Lett. 113, 166901 (2014).

    Article  Google Scholar 

  28. Kaindl, R. A., Carnahan, M. A., Hägele, D., Lövenich, R. & Chemla, D. S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas. Nature 423, 734–738 (2003).

    Article  CAS  Google Scholar 

  29. Porer, M. et al. Non-thermal seperation of electronic and structural orders in a persisting charge density wave. Nature Mater. 13, 857–861 (2014).

    Article  CAS  Google Scholar 

  30. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Eisele, T. Cocker, M. Huber, J. Fabian, A. Chernikov, S. Michaelis de Vasconcellos, R. Schmidt and C. Frankerl for helpful discussions and M. Furthmeier for technical assistance. Support by the European Research Council through ERC grant 305003 (QUANTUMsubCYCLE) and by Deutsche Forschungsgemeinschaft (DFG) through Research Training Group GK1570 and KO3612/1-1 is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

C.P., R.B., C.S., T.K. and R.H. planned the project; P.N., G.P., R.B., C.S. and T.K. provided, processed and characterized the samples; C.P., P.S., U.L. and M.P. performed the femtosecond measurements; C.P., P.S., U.L., M.P. and R.H. analysed the data; C.P., P.S. and R.H. elaborated the theoretical model; C.P., P.S. and R.H. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to R. Huber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poellmann, C., Steinleitner, P., Leierseder, U. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nature Mater 14, 889–893 (2015). https://doi.org/10.1038/nmat4356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing