Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eliminating degradation in solid oxide electrochemical cells by reversible operation

Subjects

Abstract

One promising energy storage technology is the solid oxide electrochemical cell (SOC), which can both store electricity as chemical fuels (electrolysis mode) and convert fuels to electricity (fuel-cell mode). The widespread use of SOCs has been hindered by insufficient long-term stability, in particular at high current densities. Here we demonstrate that severe electrolysis-induced degradation, which was previously believed to be irreversible, can be completely eliminated by reversibly cycling between electrolysis and fuel-cell modes, similar to a rechargeable battery. Performing steam electrolysis continuously at high current density (1 A cm−2), initially at 1.33 V (97% energy efficiency), led to severe microstructure deterioration near the oxygen-electrode/electrolyte interface and a corresponding large increase in ohmic resistance. After 4,000 h of reversible cycling, however, no microstructural damage was observed and the ohmic resistance even slightly improved. The results demonstrate the viability of applying SOCs for renewable electricity storage at previously unattainable reaction rates, and have implications for our fundamental understanding of degradation mechanisms that are usually assumed to be irreversible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Storage of intermittent renewable electricity using a reversible SOC.
Figure 2: Comparison of the SOC stability during a constant-current electrolysis test and a reversible cycling test (cycles with 1 h in electrolysis mode and 5 h in fuel-cell mode).
Figure 3: Micrographs of the deteriorated oxygen-electrode/electrolyte interface in the cell operated continuously in electrolysis mode.
Figure 4: Change in the ohmic resistance of two SOCs during consecutive reversible charge–discharge cycles with different duty cycles for the fuel-cell mode (FC) and electrolysis mode (EL) time periods.

Similar content being viewed by others

References

  1. Dunn, B., Kamath, H. & Tarascon, J-M. Electrical energy storage for the grid: A battery of choices. Science 334, 928–935 (2011).

    Article  CAS  Google Scholar 

  2. Isenberg, A. O. Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures. Solid State Ionics 3–4, 431–437 (1981).

    Article  Google Scholar 

  3. Jensen, S. H. & Mogensen, M. 19th World Energy Congr. 5–9 (World Energy Council, 2004).

    Google Scholar 

  4. Jensen, S. H., Larsen, P. H. & Mogensen, M. Hydrogen and synthetic fuel production from renewable energy sources. Int. J. Hydrog. Energy 32, 3253–3257 (2007).

    Article  CAS  Google Scholar 

  5. Zhan, Z. et al. Syngas production by coelectrolysis of CO2/H2O: The basis for a renewable energy cycle. Energy Fuels 23, 3089–3096 (2009).

    Article  CAS  Google Scholar 

  6. Ebbesen, S. D., Graves, C. & Mogensen, M. Production of synthetic fuels by co-electrolysis of steam and carbon dioxide. Int. J. Green Energy 6, 646–660 (2009).

    Article  CAS  Google Scholar 

  7. Graves, C., Ebbesen, S. D. & Mogensen, M. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability. Solid State Ionics 192, 398–403 (2011).

    Article  CAS  Google Scholar 

  8. Stoots, C. M., O’Brien, J. E., Herring, J. S. & Hartvigsen, J. J. Syngas production via high-temperature coelectrolysis of steam and carbon dioxide. J. Fuel Cell Sci. Technol. 6, 011014 (2009).

    Article  Google Scholar 

  9. Graves, C., Ebbesen, S. D., Mogensen, M. & Lackner, K. S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sust. Energy Rev. 15, 1–23 (2011).

    Article  CAS  Google Scholar 

  10. Fu, Q., Mabilat, C., Zahid, M., Brisse, A. & Gautier, L. Syngas production via high-temperature steam/CO2 co-electrolysis: An economic assessment. Energy Environ. Sci. 3, 1382–1397 (2010).

    Article  CAS  Google Scholar 

  11. Bierschenk, D. M., Wilson, J. R. & Barnett, S. A. High efficiency electrical energy storage using a methane–oxygen solid oxide cell. Energy Environ. Sci. 4, 944–951 (2011).

    Article  CAS  Google Scholar 

  12. Hauch, A., Jensen, S. H., Ramousse, S. & Mogensen, M. Performance and durability of solid oxide electrolysis cells. J. Electrochem. Soc. 153, A1741–A1747 (2006).

    Article  CAS  Google Scholar 

  13. Knibbe, R., Traulsen, M. L., Hauch, A., Ebbesen, S. D. & Mogensen, M. Solid oxide electrolysis cells: Degradation at high current densities. J. Electrochem. Soc. 157, B1209–B1217 (2010).

    Article  CAS  Google Scholar 

  14. Hjalmarsson, P., Sun, X., Liu, Y-L. & Chen, M. Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells. J. Power Sources 223, 349–357 (2013).

    Article  CAS  Google Scholar 

  15. Tietz, F., Sebold, D., Brisse, A. & Schefold, J. Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J. Power Sources 223, 129–135 (2013).

    Article  CAS  Google Scholar 

  16. Knibbe, R., Hauch, A., Hjelm, J., Ebbesen, S. D. & Mogensen, M. Durability of solid oxide cells. Green 1, 141–169 (2011).

    Article  CAS  Google Scholar 

  17. Ebbesen, S. D., Graves, C., Hauch, A., Jensen, S. H. & Mogensen, M. Poisoning of solid oxide electrolysis cells by impurities. J. Electrochem. Soc. 157, B1419–B1429 (2010).

    Article  CAS  Google Scholar 

  18. Matus, Y., De Jonghe, L. C., Visco, S. J. & Jacobson, C. P. Solid Oxide Fuel Cells 8th Proc. Int. Symp. (The Electrochemical Society, 2003).

    Google Scholar 

  19. Virkar, A. V., Nachlas, J., Joshi, A. V. & Diamond, J. Internal precipitation of molecular oxygen and electromechanical failure of zirconia solid electrolytes. J. Am. Ceram. Soc. 73, 3382–3390 (1990).

    Article  CAS  Google Scholar 

  20. Perfiliev, M. V. Problems of high-temperature electrolysis of water vapour. Int. J. Hydrog. Energy 19, 227–230 (1994).

    Article  CAS  Google Scholar 

  21. Jacobsen, T. & Mogensen, M. The course of oxygen partial pressure and electric potentials across an oxide electrolyte cell. ECS Trans. 13, 259–273 (2008).

    Article  CAS  Google Scholar 

  22. Virkar, A. V. Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells. Int. J. Hydrog. Energy 35, 9527–9543 (2010).

    Article  CAS  Google Scholar 

  23. Keane, M., Mahapatra, M. K., Verma, A. & Singh, P. LSM–YSZ interactions and anode delamination in solid oxide electrolysis cells. Int. J. Hydrog. Energy 37, 16776–16785 (2012).

    Article  CAS  Google Scholar 

  24. Brichzin, V., Fleig, J., Habermeier, H-U., Cristiani, G. & Maier, J. The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia. Solid State Ionics 152–153, 499–507 (2002).

    Article  Google Scholar 

  25. Chen, K. & Jiang, S. P. Failure mechanism of (La, Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells. Int. J. Hydrog. Energy 36, 10541–10549 (2011).

    Article  CAS  Google Scholar 

  26. Chen, K., Ai, N. & Jiang, S. P. Performance and stability of (La, Sr)MnO3–Y2O3–ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation conditions. Int. J. Hydrog. Energy 37, 10517–10525 (2012).

    Article  CAS  Google Scholar 

  27. Kim, J. et al. Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization. Int. J. Hydrog. Energy 38, 1225–1235 (2013).

    Article  CAS  Google Scholar 

  28. Guan, J. et al. High Performance Flexible Reversible Solid Oxide Fuel Cell (GE Global Research Center, 2007).

    Google Scholar 

  29. Mawdsley, J. R., David Carter, J., Jeremy Kropf, A., Yildiz, B. & Maroni, V. A. Post-test evaluation of oxygen electrodes from solid oxide electrolysis stacks. Int. J. Hydrog. Energy 34, 4198–4207 (2009).

    Article  CAS  Google Scholar 

  30. Sohal, M. S. et al. Degradation issues in solid oxide cells during high temperature electrolysis. J. Fuel Cell Sci. Technol. 9, 011017 (2012).

    Article  Google Scholar 

  31. Laguna-Bercero, M. A., Campana, R., Larrea, A., Kilner, J. A. & Orera, V. M. Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide steam electrolysis cells at high voltages of operation. J. Power Sources 196, 8942–8947 (2011).

    Article  CAS  Google Scholar 

  32. Rashkeev, S. N. & Glazoff, M. V. Atomic-scale mechanisms of oxygen electrode delamination in solid oxide electrolyzer cells. Int. J. Hydrog. Energy 37, 1280–1291 (2012).

    Article  CAS  Google Scholar 

  33. Barfod, R. et al. Detailed characterization of anode-supported SOFCs by impedance spectroscopy. J. Electrochem. Soc. 154, B371–B378 (2007).

    Article  CAS  Google Scholar 

  34. Gazzarri, J. I. & Kesler, O. Electrochemical AC impedance model of a solid oxide fuel cell and its application to diagnosis of multiple degradation modes. J. Power Sources 167, 100–110 (2007).

    Article  CAS  Google Scholar 

  35. Liu, Y. L., Thydén, K., Chen, M. & Hagen, A. Microstructure degradation of LSM–YSZ cathode in SOFCs operated at various conditions. Solid State Ionics 206, 97–103 (2012).

    Article  Google Scholar 

  36. Backhaus-Ricoult, M. et al. In-situ study of operating SOFC LSM/YSZ cathodes under polarization by photoelectron microscopy. Solid State Ionics 179, 891–895 (2008).

    Article  CAS  Google Scholar 

  37. Cable, T. L., Setlock, J. A., Farmer, S. C. & Eckel, A. J. Regenerative performance of the NASA symmetrical solid oxide fuel cell design. Int. J. Appl. Ceram. Technol. 8, 1–12 (2011).

    Article  CAS  Google Scholar 

  38. Tang, E. et al. Advanced Materials for RSOFC Dual Operation with Low Degradation (Versa Power Systems, 2012).

    Google Scholar 

  39. Njodzefon, J-C., Klotz, D., Menzler, N. H., Weber, A. & Ivers-Tiffée, E. 10th Eur. SOFC Forum 80–91 (European Fuel Cell Forum AG, 2012).

    Google Scholar 

  40. De Jonghe, L. C. Transport number gradients and solid electrolyte degradation. J. Electrochem. Soc. 129, 752–755 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program Commission on Sustainable Energy and Environment, The Danish Council for Strategic Research, through the SERC project (http://www.serc.dk), contract no. 2104-06-0011, and the Nordic Energy Research Council (NER) project no. 40000. We thank A. Hauch, M. Davodi and H. Henriksen for help and assistance with the experimental work, and other colleagues at DTU Energy Conversion for support and valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.G. conceived the project and executed the electrochemical experiments and scanning electron microscopy analysis. C.G., M.B.M., S.D.E. and S.H.J. designed the electrochemical experiments. S.D.E. improved/developed the experimental set-up. S.B.S. executed the transmission electron microscopy analysis. C.G. wrote the paper with contributions from S.D.E., S.B.S., S.H.J. and M.B.M.

Corresponding author

Correspondence to Christopher Graves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graves, C., Ebbesen, S., Jensen, S. et al. Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nature Mater 14, 239–244 (2015). https://doi.org/10.1038/nmat4165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing