Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Platinum–cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural

Abstract

The synthesis of 2,5-dimethylfuran (DMF) from 5-hydroxymethylfurfural (HMF) is a highly attractive route to a renewable fuel. However, achieving high yields in this reaction is a substantial challenge. Here it is described how PtCo bimetallic nanoparticles with diameters of 3.6 ± 0.7 nm can solve this problem. Over PtCo catalysts the conversion of HMF was 100% within 10 min and the yield to DMF reached 98% after 2 h, which substantially exceeds the best results reported in the literature. Moreover, the synthetic method can be generalized to other bimetallic nanoparticles encapsulated in hollow carbon spheres.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for the synthesis of three different materials.
Figure 2: Platinum nanopaticles encapsulated in the hollow structures.
Figure 3: Platinum–cobalt bimetallic nanopaticles encapsulated in the HCS.
Figure 4: XRD patterns and N2 sorption isotherms.
Figure 5: TEM images and the corresponding XRD patterns of other materials synthesized by our strategy.

References

  1. Roman-Leshkov, Y., Barrett, C. J., Liu, Z. Y. & Dumesic, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447, 982–985 (2007).

    Article  CAS  Google Scholar 

  2. Zhong, S. H. et al. Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energ. Fuel. 24, 2891–2899 (2010).

    Article  CAS  Google Scholar 

  3. Carrasquillo-Flores, R., Kaldstrom, M., Schüth, F., Dumesic, J. A. & Rinaldi, R. Mechanocatalytic depolymerization of dry (ligno)cellulose as an entry process for high-yield production of furfurals. ACS Catal. 3, 993–997 (2013).

    Article  CAS  Google Scholar 

  4. Binder, J. B. & Raines, R. T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979–1985 (2009).

    Article  CAS  Google Scholar 

  5. Luijkx, G. C. A., Huck, N. P. M., Van Rantwijk, F., Maat, L. & Van Bekkum, H. Ether formation in the hydrogenolysis of hydroxymethylfurfural over palladium catalysts in alcoholic solution. Heterocycles 77, 1037–1044 (2009).

    Article  CAS  Google Scholar 

  6. Thananatthanachon, T. & Rauchfuss, T. B. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew. Chem. Int. Ed. 49, 6616–6618 (2010).

    Article  CAS  Google Scholar 

  7. Chidambaram, M. & Bell, A. T. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem. 12, 1253–1262 (2010).

    Article  CAS  Google Scholar 

  8. Newton, M. A. & Van Beek, W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem. Soc. Rev. 39, 4845–4863 (2010).

    Article  CAS  Google Scholar 

  9. Tao, F., Zhang, S. R., Nguyen, L. & Zhang, X. Q. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. Chem. Soc. Rev. 41, 7980–7993 (2012).

    Article  CAS  Google Scholar 

  10. Tao, F. Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem. Soc. Rev. 41, 7977–7979 (2012).

    Article  CAS  Google Scholar 

  11. Borgna, A. et al. Pt-Co/SiO2 bimetallic planar model catalysts for selective hydrogenation of crotonaldehyde. J. Phys. Chem. B 108, 17905–17914 (2004).

    Article  CAS  Google Scholar 

  12. Tsang, S. C. et al. Engineering preformed cobalt-doped platinum nanocatalysts for ultraselective hydrogenation. ACS Nano 2, 2547–2553 (2008).

    Article  CAS  Google Scholar 

  13. Wu, B. H., Huang, H. Q., Yang, J., Zheng, N. F. & Fu, G. Selective hydrogenation of alpha, beta-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew. Chem. Int. Ed. 51, 3440–3443 (2012).

    Article  CAS  Google Scholar 

  14. Takenaka, S., Hirata, A., Tanabe, E., Matsune, H. & Kishida, M. Preparation of supported Pt-Co alloy nanoparticle catalysts for the oxygen reduction reaction by coverage with silica. J. Catal. 274, 228–238 (2010).

    Article  CAS  Google Scholar 

  15. Zignani, S. C., Antolini, E. & Gonzalez, E. R. Evaluation of the stability and durability of Pt and Pt-Co/C catalysts for polymer electrolyte membrane fuel cells. J. Power Sources 182, 83–90 (2008).

    Article  CAS  Google Scholar 

  16. Cui, X. Z., Shi, J. L., Zhang, L. X., Ruan, M. L. & Gao, J. H. PtCo supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation. Carbon 47, 186–194 (2009).

    Article  CAS  Google Scholar 

  17. Bauer, J. C., Chen, X., Liu, Q. S., Phan, T. H. & Schaak, R. E. Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis. J. Mater. Chem. 18, 275–282 (2008).

    Article  CAS  Google Scholar 

  18. Xin, X., Xu, G. Y., Wang, Y. J., Mao, H. Z. & Zhang, Z. Q. Interaction between star-like block copolymer and sodium oleate in aqueous solutions. Eur. Polym. J. 44, 3246–3255 (2008).

    Article  CAS  Google Scholar 

  19. Ganguly, R., Aswal, V. K., Hassan, P. A., Gopalakrishnan, I. K. & Kulshreshtha, S. K. Effect of SDS on the self-assembly behavior of the PEO–PPO–PEO triblock copolymer (EO)(20)(PO)(70)(EO)(20). J. Phys. Chem. B 110, 9843–9849 (2006).

    Article  CAS  Google Scholar 

  20. Nakashima, K. & Bahadur, P. Aggregation of water-soluble block copolymers in aqueous solutions: recent trends. Adv. Colloid Interface Sci. 123, 75–96 (2006).

    Article  Google Scholar 

  21. Wang, G. H. et al. Weak acid-base interaction induced assembly for the synthesis of diverse hollow nanospheres. Chem. Mater. 23, 4537–4542 (2011).

    Article  CAS  Google Scholar 

  22. Niesz, K., Grass, M. & Somorjai, G. A. Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents. Nano Lett. 5, 2238–2240 (2005).

    Article  CAS  Google Scholar 

  23. Sakai, T. & Alexandridis, P. Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir 20, 8426–8430 (2004).

    Article  CAS  Google Scholar 

  24. Sakai, T. & Alexandridis, P. Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J. Phys. Chem. B 109, 7766–7777 (2005).

    Article  CAS  Google Scholar 

  25. Piao, Y. Z., Jang, Y. J., Shokouhimehr, M., Lee, I. S. & Hyeon, T. Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes. Small 3, 255–260 (2007).

    Article  CAS  Google Scholar 

  26. Wang, C., Daimon, H., Lee, Y., Kim, J. & Sun, S. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 129, 6974–6975 (2007).

    Article  CAS  Google Scholar 

  27. Yin, A. X., Min, X. Q., Zhang, Y. W. & Yan, C. H. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133, 3816–3819 (2011).

    Article  CAS  Google Scholar 

  28. Yin, A. X. et al. Multiply twinned Pt-Pd nanoicosahedrons as highly active electrocatalysts for methanol oxidation. Chem. Commun. 48, 543–545 (2012).

    Article  CAS  Google Scholar 

  29. Lu, A. H. et al. Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew. Chem. Int. Ed. 49, 1615–1618 (2010).

    Article  CAS  Google Scholar 

  30. Arnal, P. M., Comotti, M. & Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 45, 8224–8227 (2006).

    Article  CAS  Google Scholar 

  31. Galeano, C. et al. Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example. Chem. Eur. J. 17, 8434–8439 (2011).

    Article  CAS  Google Scholar 

  32. Zhang, X. & Chan, K. Y. Microemulsion synthesis and electrocatalytic properties of platinum-cobalt nanoparticles. J. Mater. Chem. 12, 1203–1206 (2002).

    Article  CAS  Google Scholar 

  33. Lim, S. I., Varon, M., Ojea-Jimenez, I., Arbiol, J. & Puntes, V. Exploring the limitations of the use of competing reducers to control the morphology and composition of Pt and PtCo nanocrystals. Chem. Mater. 22, 4495–4504 (2010).

    Article  CAS  Google Scholar 

  34. Liu, S. H., Zheng, F. S. & Wu, J. R. Preparation of ordered mesoporous carbons containing well-dispersed and highly alloying Pt-Co bimetallic nanoparticles toward methanol-resistant oxygen reduction reaction. Appl. Catal. B 108, 81–89 (2011).

    Article  Google Scholar 

  35. Xu, J. F. et al. Platinum-cobalt alloy networks for methanol oxidation electrocatalysis. J. Mater. Chem. 22, 23659–23667 (2012).

    Article  CAS  Google Scholar 

  36. Wang, D. L. et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Mater. 12, 81–87 (2013).

    Article  CAS  Google Scholar 

  37. Schwickardi, M., Johann, T., Schmidt, W. & Schüth, F. High-surface-area oxides obtained by an activated carbon route. Chem. Mater. 14, 3913–3919 (2002).

    Article  CAS  Google Scholar 

  38. Hansen, T. S., Barta, K., Anastas, P. T., Ford, P. C. & Riisager, A. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chem. 14, 2457–2461 (2012).

    Article  CAS  Google Scholar 

  39. Jae, J., Zheng, W., Lobo, R. F. & Vlachos, D. G. Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. ChemSusChem 6, 1158–1162 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted in the framework of the ERC Advanced Grant project ‘POLYCAT’, in addition it was financially supported by the cluster of excellence ‘TMFB’.

Author information

Authors

Contributions

F.S. and G-H.W. conceived and designed the experiments. G-H.W. performed the synthesis of materials. G-H.W. and J.H. performed the catalytic tests. F.H.R. and F.W. participated in analysis of the data. H-J.B. performed STEM measurements and data analysis. B.S. performed TEM measurements and data analysis. C.W. performed XPS measurements and data analysis. G-H.W. and F.S. wrote the manuscript. F.S. supervised the project. All authors discussed the results and commented on the manuscript.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1680 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, GH., Hilgert, J., Richter, F. et al. Platinum–cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nature Mater 13, 293–300 (2014). https://doi.org/10.1038/nmat3872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing