Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin polarization in half-metals probed by femtosecond spin excitation

Abstract

Knowledge of the spin polarization is of fundamental importance for the use of a material in spintronics applications. Here, we used femtosecond optical excitation of half-metals to distinguish between half-metallic and metallic properties. Because the direct energy transfer by Elliot–Yafet scattering is blocked in a half-metal, the demagnetization time is a measure for the degree of half-metallicity. We propose that this characteristic enables us vice versa to establish a novel and fast characterization tool for this highly important material class used in spin-electronic devices. The technique has been applied to a variety of materials where the spin polarization at the Fermi level ranges from 45 to 98%: Ni, Co2MnSi, Fe3O4, La0.66Sr0.33MnO3 and CrO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the ‘classical’ techniques to determine the spin polarization P of a material.
Figure 2: Three-temperature model as determined by rate equations.
Figure 3: Study of the spin polarization using all-optical pump–probe experiments to determine the demagnetization time τm.
Figure 4: Classification of the materials by the value of the spin polarization P and their demagnetization time τm.
Figure 5: All-optical pump–probe experiments shown on the short timescale to reveal the demagnetization by spin flips of the non-thermalized electrons.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  2. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  3. Reiss, G. & Meyners, D. Logic based on magnetic tunnel junctions. J. Phys. Condens. Matter 19, 165220–165242 (2007).

    Article  Google Scholar 

  4. Stearns, M. B. Simple explanation of tunneling spin-polarization of Fe, Co, Ni and its alloys. J. Magn. Magn. Mater. 5, 167–171 (1977).

    Article  CAS  Google Scholar 

  5. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    Article  CAS  Google Scholar 

  6. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  CAS  Google Scholar 

  7. Butler, W. H., Zhang, X. G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article  Google Scholar 

  8. Nagahama, T., Santos, T. S. & Moodera, J. S. Enhanced magnetotransport at high bias in quasimagnetic tunnel junctions with EuS spin-filter barriers. Phys. Rev. Lett. 99, 016602 (2007).

    Article  CAS  Google Scholar 

  9. de Groot, R. A., Möller, F. M., van Engen, P.G. & Buschow, K.H.J. New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983).

    Article  CAS  Google Scholar 

  10. Venkatesan, M. in Handbook of Magnetism and Advanced Magnetic Materials Vol. 4, Novel Materials (eds Kronmüller, H. & Parkin, S. S. P.) (Wiley, 2007).

    Google Scholar 

  11. Katsnelson, M. I., Irkhin, V. Yu., Chioncel, L., Lichtenstein, A. I. & de Groot, R. A. Half metallic ferromagnets: From band structure to many-body effects. Rev. Mod. Phys. 80, 315–378 (2008).

    Article  CAS  Google Scholar 

  12. Soulen, R. J. Jr. et al. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998).

    Article  CAS  Google Scholar 

  13. Mazin, I. I. How to define and calculate the degree of spin polarization in ferromagnets. Phys. Rev. Lett. 83, 1427–1430 (1999).

    Article  CAS  Google Scholar 

  14. Nadgorny, B. et al. Origin of high transport spin polarization in La0.7Sr0.3MnO3: Direct evidence for minority spin states. Phys. Rev. B 63, 184433 (2001).

    Article  Google Scholar 

  15. Münzenberg, M. & Moodera, J. S. Superconductor-ferromagnet tunneling measurements indicate sp-spin and d-spin currents. Phys. Rev. B 70, 060402(R) (2004).

    Article  Google Scholar 

  16. Hanssen, K. E. H. M., Mijnarends, P. E., Rabou, L. P. L. M. & Buschow, K. H. J. Positron-annihilation study of the half-metallic ferromagnet NiMnSb: Experiment. Phys. Rev. B 42, 1533–1540 (1990).

    Article  CAS  Google Scholar 

  17. Zhang, Q., Nurmikko, A. V., Miao, G. X., Xiao, G. & Gupta, A. Ultrafast spin-dynamics in half-metallic CrO2 thin films. Phys. Rev. B 74, 064414 (2006).

    Article  Google Scholar 

  18. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  CAS  Google Scholar 

  19. Koopmans, B., Ruigrok, J. J. M., Dalla Longa, F. & de Jonge, W. J. M. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 95, 267207 (2005).

    Article  CAS  Google Scholar 

  20. Ogasawara, T. et al. General features of photoinduced spin dynamics in ferromagnetic and ferrimagnetic compounds. Phys. Rev. Lett. 94, 087202 (2005).

    Article  CAS  Google Scholar 

  21. Hübner, W. & Bennemann, K. H. Simple theory for spin-lattice relaxation in metallic rare-earth ferromagnets. Phys. Rev. B 53, 3422–3427 (1996).

    Article  Google Scholar 

  22. Lobad, A. I., Averitt, R. D., Kwon, C. & Taylor, J. Spin–lattice interaction in colossal magnetoresistance manganites. Appl. Phys. Lett. 77, 4025–4027 (2000).

    Article  CAS  Google Scholar 

  23. Chioncel, L. et al. Nonquasiparticle states in Co2MnSi evidenced through magnetic tunnel junction spectroscopy measurements. Phys. Rev. Lett. 100, 086402 (2008).

    Article  CAS  Google Scholar 

  24. Dowben, P. A. & Skomski, R. Finite-temperature spin polarization in half-metallic ferromagnets. J. Appl. Phys. 93, 7948–7950 (2003).

    Article  CAS  Google Scholar 

  25. Lezaic, M., Mavropoulos, Ph., Enkovaara, J., Bihlmayer, G. & Blügel, S. Thermal collapse of spin polarization in half-metallic ferromagnets. Phys. Rev. Lett. 97, 026404 (2006).

    Article  CAS  Google Scholar 

  26. Pickart, S. J. et al. Spin-wave dispersion in ferromagnetic Ni and fcc Co. Phys. Rev. 156, 623–626 (1967).

    Article  CAS  Google Scholar 

  27. Ye, F. et al. Evolution of spin-wave excitations in ferromagnetic metallic manganites. Phys. Rev. Lett. 96, 047204 (2006).

    Article  CAS  Google Scholar 

  28. Halilov, S. V., Eschrig, H., Perlov, A. Y. & Oppeneer, P. M. Adiabatic spin dynamics from spin-density-functional theory: Application to Fe, Co, and Ni. Phys. Rev. B 58, 293–302 (1998).

    Article  CAS  Google Scholar 

  29. Koopmans, B., van Kampen, M., Kohlhepp, J.T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: Magnetism or optics? Phys. Rev. Lett. 85, 844–848 (2000).

    Article  CAS  Google Scholar 

  30. Djordjevic, M. & Münzenberg, M. Connecting the timescales in picosecond remagnetization experiments. Phys. Rev. B 75, 012404 (2007).

    Article  Google Scholar 

  31. Schwarz, K.-H. CrO2 predicted as a half-metallic ferromagnet. J. Phys. F: Met. Phys. 16, L211–L215 (1986).

    Article  CAS  Google Scholar 

  32. Dedkov, Y. S. et al. Room-temperature observation of high-spin polarization of epitaxial CrO2(100) island films at the Fermi energy. Appl. Phys. Lett. 80, 4181–4183 (2002).

    Article  CAS  Google Scholar 

  33. Anguelouch, A. et al. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys. Rev. B 64, 180408 (2001).

    Article  Google Scholar 

  34. Parker, J. S., Watts, S. M., Ivanov, P. G. & Xiong, P. Spin polarization of CrO2 at and across an artificial barrier. Phys. Rev. Lett. 88, 196601 (2001).

    Article  Google Scholar 

  35. Picozzi, S., Continenza, A. & Freeman, A. J. Role of structural defects on the half-metallic character of Co2MnGe and Co2MnSi Heusler alloys. Phys. Rev. B 69, 094423 (2004).

    Article  Google Scholar 

  36. Sakuraba, Y. et al. Giant tunneling magnetoresistance in Co2MnSi/Al–O/Co2MnSi magnetic tunnel junctions. Appl. Phys. Lett. 88, 192508 (2006).

    Article  Google Scholar 

  37. Schmalhorst, J. et al. Transport properties of magnetic tunnel junctions with Co2MnSi electrodes: The influence of temperature-dependent interface magnetization and electronic band structure. Phys. Rev. B 75, 014403 (2007).

    Article  Google Scholar 

  38. Hattori, M., Sakuraba, Y., Oogane, M., Ando, Y. & Miyazaki, T. Tunnel magnetoresistance effect in magnetic tunnel junctions using a Co2MnSi(110) electrode. Appl. Phys. Express 1, 021301 (2008).

    Article  Google Scholar 

  39. Kim, T. H. & Moodera, J. S. Large spin polarization in epitaxial and polycrystalline Ni films. Phys. Rev. B 69, 020403 (2004).

    Article  Google Scholar 

  40. Dedkov, Y. S., Rüdiger, U. & Güntherodt, G. Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy. Phys. Rev. B 65, 064417 (2002).

    Article  Google Scholar 

  41. Elliot, R. J. Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

    Article  Google Scholar 

  42. Müller, G.M., Münzenberg, M., Miao, G.-X. & Gupta, A. Activation of additional energy dissipation processes in the magnetization dynamics of epitaxial chromium dioxide films. Phys. Rev. B 77, 020412 (2008).

    Article  Google Scholar 

  43. Stamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nature Mater. 6, 740–743 (2007).

    Article  CAS  Google Scholar 

  44. Melnikov, A. et al. Nonequilibrium magnetization dynamics of gadolinium studied by magnetic linear dichroism in time-resolved 4f core-level photoemission. Phys. Rev. Lett. 100, 107202 (2008).

    Article  CAS  Google Scholar 

  45. Cinchetti, M. et al. Spin-flip processes and ultrafast magnetization dynamics in Co: Unifying the microscopic and macroscopic view of femtosecond magnetism. Phys. Rev. Lett. 97, 177201 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support by the Deutsche Forschungsgemeinschaft within the priority program SPP 1133 and SFB 602 is gratefully acknowledged. In MIT, the work is supported by NSF and ONR grants; at the University of Alabama, support by a NSF MRSEC grant is gratefully acknowledged. M.M. thanks J. Stöhr and B. Koopmans for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.M. designed research and model; G.M.M., J.W., M.D. and M.M. carried out research (femtosecond dynamics), G.M.M. main contributor to experiment execution and data analysis; G.X.M., A.G., A.V.R., K.G., V.M., K.S., J.S., A.T., A.H. and G.R. carried out research (spin transport, film growth and characterization); M.M. wrote the manuscript; J.S.M. and M.M. coordinated research.

Corresponding author

Correspondence to Markus Münzenberg.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1617 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, G., Walowski, J., Djordjevic, M. et al. Spin polarization in half-metals probed by femtosecond spin excitation. Nature Mater 8, 56–61 (2009). https://doi.org/10.1038/nmat2341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing