Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution

Abstract

The pace of materials discovery for heterogeneous catalysts and electrocatalysts could, in principle, be accelerated by the development of efficient computational screening methods. This would require an integrated approach, where the catalytic activity and stability of new materials are evaluated and where predictions are benchmarked by careful synthesis and experimental tests. In this contribution, we present a density functional theory-based, high-throughput screening scheme that successfully uses these strategies to identify a new electrocatalyst for the hydrogen evolution reaction (HER). The activity of over 700 binary surface alloys is evaluated theoretically; the stability of each alloy in electrochemical environments is also estimated. BiPt is found to have a predicted activity comparable to, or even better than, pure Pt, the archetypical HER catalyst. This alloy is synthesized and tested experimentally and shows improved HER performance compared with pure Pt, in agreement with the computational screening results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Volcano plot for the HER for various pure metals and metal overlayers.
Figure 2: Schematic diagrams of surface alloys at the solute coverages for which calculations are carried out.
Figure 3: Computational high-throughput screening for |ΔGH| on 256 pure metals and surface alloys.
Figure 4: Pareto-optimal plot of stability and activity of surface alloys for the HER.
Figure 5: Hydrogen evolution after each stage of BiPt surface alloy synthesis on a fluorine-doped tin-oxide substrate.

Similar content being viewed by others

References

  1. Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nature Mater. 3, 810–815 (2004).

    Article  Google Scholar 

  2. Muller, R. P., Philipp, D. M. & Goddard, W. A. Quantum mechanical-rapid prototyping applied to methane activation. Top. Catalys. 23, 81–98 (2003).

    Article  Google Scholar 

  3. Andersson, M. P. et al. Towards computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts. J. Catalys. 239, 501–506 (2006).

    Article  Google Scholar 

  4. Greeley, J., Nørskov, J. K. & Mavrikakis, M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 53, 319–348 (2002).

    Article  Google Scholar 

  5. Toulhoat, H. & Raybaud, P. Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors. J. Catalys. 216, 63–72 (2003).

    Article  Google Scholar 

  6. Linic, S., Jankowiak, J. & Barteau, M. A. Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles. J. Catalys. 224, 489–493 (2004).

    Article  Google Scholar 

  7. Ceder, G. et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694–696 (1998).

    Article  Google Scholar 

  8. Besenbacher, F. et al. Design of a surface alloy catalyst for steam reforming. Science 279, 1913–1915 (1998).

    Article  Google Scholar 

  9. Franceschetti, A. & Zunger, A. The inverse hand-structure problem of finding an atomic configuration with given electronic properties. Nature 402, 60–63 (1999).

    Article  Google Scholar 

  10. Vitos, L., Korzhavyi, P. A. & Johansson, B. Stainless steel optimization from quantum mechanical calculations. Nature Mater. 2, 25–28 (2003).

    Article  Google Scholar 

  11. Jacobson, M. Z., Colella, W. G. & Golden, D. M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308, 1901–1905 (2005).

    Article  Google Scholar 

  12. Hamann, C. H., Hamnett, A. & Vielstich, W. Electrochemistry (Wiley-VCH, Weinheim, 1998).

    Google Scholar 

  13. Lide, D. R. (ed.) CRC Handbook of Chemistry and Physics (CRC Press, New York, 1996).

  14. Conway, B. E. & Bockris, J. O. M. Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J. Chem. Phys. 26, 532–541 (1957).

    Article  Google Scholar 

  15. Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958).

    Article  Google Scholar 

  16. Gerischer, H. Mechanism of electrolytic discharge of hydrogen and adsorption energy of atomic hydrogen. Bull. Soc. Chim. Belg. 67, 506 (1958).

    Article  Google Scholar 

  17. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972).

    Article  Google Scholar 

  18. Krishtalik, L. I. On the influence of hydrogenation of the cathode metal upon the overvoltage of hydrogen. Electrokhimiya 2, 616 (1966).

    Google Scholar 

  19. Sabatier, P. Hydrogénations et deshydrogénations par catalyse. Ber. Deutschen Chem. Gesellschaft 44, 1984 (1911).

    Article  Google Scholar 

  20. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  Google Scholar 

  21. Greeley, J., Kibler, L., El-Aziz, A. M., Kolb, D. M. & Nørskov, J. K. Hydrogen evolution over bimetallic systems: Understanding the trends. ChemPhysChem 7, 1032–1035 (2006).

    Article  Google Scholar 

  22. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  23. Casado-Rivera, E. et al. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 126, 4043–4049 (2004).

    Article  Google Scholar 

  24. Markovic, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 121–229 (2002).

    Article  Google Scholar 

  25. Schmidt, T. J., Stamenkovic, V. R., Lucas, C. A., Markovic, N. M. & Ross, P. N. Surface processes and electrocatalysts on the Pt(hkl)/Bi-solution interface. Phys. Chem. Chem. Phys. 3, 3879–3890 (2001).

    Article  Google Scholar 

  26. Gómez, R., Fernández-Vega, A., Feliu, J. M. & Aldaz, A. Hydrogen evolution on Pt single-crystal surfaces—effects of irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on Pt(100). J. Phys. Chem. 97, 4769–4776 (1993).

    Article  Google Scholar 

  27. Gómez, R., Feliu, J. M. & Aldaz, A. Effects of irreversibly adsorbed bismuth on hydrogen adsorption and evolution on Pt(111). Electrochim. Acta 42, 1675–1683 (1997).

    Article  Google Scholar 

  28. Bowles, B. J. Formation and desorption of monolayers of bismuth on a platinum electrode. Electrochim. Acta 15, 737 (1970).

    Article  Google Scholar 

  29. Clavilier, J., Feliu, J. M. & Aldaz, A. An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum-electrodes. J. Electroanal. Chem. 243, 419–433 (1988).

    Article  Google Scholar 

  30. Hayden, B. E., Murray, A. J., Parsons, R. & Pegg, D. J. UHV and electrochemical transfer studies on Pt(110)-(1x2): The influence of bismuth on hydrogen and oxygen adsorption, and the electro-oxidation of carbon monoxide. J. Electroanal. Chem. 409, 51–63 (1996).

    Article  Google Scholar 

  31. Evans, R. W. & Attard, G. A. The redox behavior of compressed bismuth overlayers irreversibly adsorbed on Pt(111). J. Electroanal. Chem. 345, 337–350 (1993).

    Article  Google Scholar 

  32. Hamm, U. W., Kramer, D., Zhai, R. S. & Kolb, D. M. On the valence state of bismuth adsorbed on a Pt(111) electrode: an electrochemistry, LEED, and XPS study. Electrochim. Acta 43, 2969–2978 (1998).

    Article  Google Scholar 

  33. Kizhakevariam, N. & Stuve, E. M. Coadsorption of bismuth with electrocatalytic molecules—a study of formic-acid oxidation on Pt(100). J. Vac. Sci. Technol. A 8, 2557–2562 (1990).

    Article  Google Scholar 

  34. Vetter, K. J. Electrochemical Kinetics: Theoretical and Experimental Aspects (Academic, New York, 1967).

    Google Scholar 

  35. Paffett, M. T., Campbell, C. T. & Taylor, T. N. The influence of adsorbed Bi on the chemisorption properties of Pt(111)— H2, CO, and O2 . J. Vac. Sci. Technol. A 3, 812–816 (1985).

    Article  Google Scholar 

  36. Paffett, M. T., Campbell, C. T. & Taylor, T. N. Adsorption and growth modes of Bi on Pt(111). J. Chem. Phys. 85, 6176–6185 (1986).

    Article  Google Scholar 

  37. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  38. Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 59, 12301–12304 (1999).

    Article  Google Scholar 

  39. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  Google Scholar 

  40. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  41. Humphrey, W., Dalke, A. & Schulten, K. VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

J.G. and T.F.J. acknowledge H. C. Ørsted Postdoctoral Fellowships from the Technical University of Denmark. J.B. acknowledges support from the Danish Strategic Research Council. The Center for Individual Nanoparticle Functionality is supported by the Danish National Research Foundation. The Center for Atomic-scale Materials Design is supported by the Lundbeck Foundation. We thank the Danish Center for Scientific Computing for computer time. We also thank K. P. Jørgensen and J. Larsen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens K. Nørskov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greeley, J., Jaramillo, T., Bonde, J. et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater 5, 909–913 (2006). https://doi.org/10.1038/nmat1752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing