Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets

Abstract

Magnetic tunnel junctions have become ubiquitous components appearing in magnetic random-access memory, read heads of magnetic disk drives and semiconductor-based spin devices. Inserting a tunnel barrier has been key to achieving spin injection from ferromagnetic (FM) metals into GaAs, but spin injection into Si has remained elusive. We show that Schottky barrier formation leads to a huge conductivity mismatch of the FM tunnel contact and Si, which cannot be solved by the well-known method of adjusting the tunnel barrier thickness. We present a radically different approach for spin-tunnelling resistance control using low-work-function ferromagnets, inserted at the FM/tunnel barrier interface. We demonstrate that in this way the resistance–area (RA) product of FM/Al2O3/Si contacts can be tuned over eight orders of magnitude, while simultaneously maintaining a reasonable tunnel spin polarization. This raises prospects for Si-based spintronics and presents a new category of ferromagnetic materials for spin-tunnel contacts in low-RA-product applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schottky barrier and required resistance–area product of ferromagnet/insulator/silicon spin-tunnel contact.
Figure 2: Structural and electrical characteristics of tunable ferromagnet/insulator/silicon spin-tunnel contacts.
Figure 3: Tunnel magnetoresistance and TSP of MTJs with low-work-function ferromagnet.
Figure 4: Optimum resistance–area product of tunnel contacts for a Si spin MOSFET.

Similar content being viewed by others

References

  1. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  Google Scholar 

  2. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    Article  Google Scholar 

  3. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  Google Scholar 

  4. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  5. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  Google Scholar 

  6. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    Article  Google Scholar 

  7. Tehrani, S. et al. Magnetoresistive random access memory using magnetic tunnel junctions. Proc. IEEE 91, 703–714 (2003).

    Article  Google Scholar 

  8. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  Google Scholar 

  9. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  Google Scholar 

  10. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  Google Scholar 

  11. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  Google Scholar 

  12. Sugahara, S. Spin metal-oxide-semiconductor field-effect transistors (spin MOSFETs) for integrated spin electronics. IEE Proc.-Circuits Devices Syst. 152, 355–365 (2005).

    Article  Google Scholar 

  13. Jonker, B. T. Progress toward electrical injection of spin-polarized electrons into semiconductors. Proc. IEEE 91, 727–740 (2003).

    Article  Google Scholar 

  14. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    Article  Google Scholar 

  15. Rashba, E. I. Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    Article  Google Scholar 

  16. Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

    Article  Google Scholar 

  17. Motsnyi, V. F. et al. Electrical spin injection in a ferromagnet/tunnel barrier/semiconductor heterostructure. Appl. Phys. Lett. 81, 265–267 (2002).

    Article  Google Scholar 

  18. van ’t Erve, O. M. J. et al. Comparison of Fe/Schottky and Fe/Al2O3 tunnel barrier contacts for electrical spin injection into GaAs. Appl. Phys. Lett. 84, 4334–4336 (2004).

    Article  Google Scholar 

  19. Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005).

    Article  Google Scholar 

  20. Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).

    Article  Google Scholar 

  21. Van Roy, W., Van Dorpe, P., De Boeck, J. & Borghs, G. Spin injection in LED’s and in unipolar devices. Mater. Sci. Eng. B 126, 155–163 (2006).

    Article  Google Scholar 

  22. Kläsges, R. et al. Formation of a ferromagnetic silicide at the Fe/Si(100) interface. Phys. Rev. B 56, 10801–10804 (1997).

    Article  Google Scholar 

  23. Thompson, R. D., Tsaur, B. Y. & Tu, K. N. Contact reaction between Si and rare earth metals. Appl. Phys. Lett. 38, 535–537 (1981).

    Article  Google Scholar 

  24. Jia, Y. Q., Shi, R. C. & Chou, S. Y. Spin-valve effects in nickel/silicon/nickel junctions. IEEE Trans. Magn. 32, 4707–4709 (1996).

    Article  Google Scholar 

  25. Sze, S. M. Physics of Semiconductor Devices 2nd edn (Wiley, New York, 1981).

    Google Scholar 

  26. Valenzuela, S. O., Monsma, D. J., Marcus, C. M., Narayanamurti, V. & Tinkham, M. Spin polarized tunneling at finite bias. Phys. Rev. Lett. 94, 196601 (2005).

    Article  Google Scholar 

  27. Beadle, W. E., Tsai, J. C. C. & Plummer, R. D. (eds) Quick Reference Manual for Silicon Integrated Circuit Technology (Wiley, New York, 1984).

  28. Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplication in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  Google Scholar 

  29. Bardeen, J. Surface states and rectification at a metal semiconductor contact. Phys. Rev. 71, 717–727 (1947).

    Article  Google Scholar 

  30. Connelly, D., Faulkner, C., Clifton, P. A. & Grupp, D. E. Fermi-level depinnning for low-barrier Schottky source/drain transistors. Appl. Phys. Lett. 88, 12105 (2006).

    Article  Google Scholar 

  31. Tu, K. N., Thompson, R. D. & Tsauer, B. Y. Low Schottky barrier of rare-earth silicide on n-Si. Appl. Phys. Lett. 38, 626–628 (1981).

    Article  Google Scholar 

  32. Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729–4733 (1977).

    Article  Google Scholar 

  33. Meservey, R., Paraskevoopoulos, D. & Tedrow, P. M. Tunneling measurements of conduction-electron-spin polarization in heavy rare-earth metals. Phys. Rev. B 22, 1331–1337 (1980).

    Article  Google Scholar 

  34. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  35. Park, B. G. et al. Temperature dependence of magnetocurrent in a magnetic tunnel transistor. J. Appl. Phys. 98, 103701 (2005).

    Article  Google Scholar 

  36. Uijttewaal, M. A. et al. Interrelation of work function and surface stability: the case of BaAl4 . Chem. Mater. 17, 3879–3882 (2005).

    Article  Google Scholar 

  37. Fan, Y. H. & Brückl, H. Magnetic moment compensation in exchange-biased triayers with antiparallel spin alignment. Appl. Phys. Lett. 83, 3138 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Keim for the transmission electron microscopy analysis. We acknowledge financial support from NanoImpuls and NanoNed, the nanotechnology network in the Netherlands, the Dutch Technology Foundation (STW) and Sony corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Jansen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and supplementary figures S1 and S2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, BC., Motohashi, K., Lodder, C. et al. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nature Mater 5, 817–822 (2006). https://doi.org/10.1038/nmat1736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing