Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic spin structure of antiferromagnetic domain walls

Abstract

The search for uncompensated magnetic moments on antiferromagnetic surfaces is of great technological importance as they are responsible for the exchange-bias effect that is widely used in state-of-the-art magnetic storage devices. We have studied the atomic spin structure of phase domain walls in the antiferromagnetic Fe monolayer on W(001) by means of spin-polarized scanning tunnelling microscopy and Monte Carlo simulations. The domain wall width only amounts to 6–8 atomic rows. Although walls oriented along 〈100〉 directions are found to be fully compensated, detailed analysis of 〈110〉-oriented walls reveals an uncompensated perpendicular magnetic moment. Our result represents a major advance in the field of antiferromagnetism, and may lead to a better understanding of the magnetic interaction between ferromagnetic and antiferromagnetic materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation and experimental observation of DWs at antiferromagnetic surfaces.
Figure 2: MC simulation of antiferromagnetic DWs.
Figure 3: Spin configuration of [010]- and [110]-oriented DWs.
Figure 4: Detailed view of a 〈110〉-oriented p-DW.

Similar content being viewed by others

References

  1. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).

    Article  Google Scholar 

  2. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 105, 904–913 (1957).

    Article  Google Scholar 

  3. Kiwi, M. Exchange bias theory. J. Magn. Magn. Mater. 234, 584–595 (2001).

    Article  Google Scholar 

  4. Ohldag, H. et al. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett. 91, 017203 (2003).

    Article  Google Scholar 

  5. Koon, N. C. Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces. Phys. Rev. Lett. 78, 4865–4868 (1997).

    Article  Google Scholar 

  6. Schulthess, T. C. & Butler, W. H. Consequences of spin-flop coupling in exchange biased films. Phys. Rev. Lett. 81, 4516–4519 (1998).

    Article  Google Scholar 

  7. Takano, K., Kodama, R. H., Berkowitz, A. E., Cao, W. & Thomas, G. Interfacial uncompensated antiferromagnetic spins: Role in unidirectional anisotropy in polycrystalline Ni18Fe19/CoO bilayers. Phys. Rev. Lett. 79, 1130–1133 (1997).

    Article  Google Scholar 

  8. Takano, K., Kodama, R. H., Berkowitz, A. E., Cao, W. & Thomas, G. Role of interfacial antiferromagnetic spins in unidirectional anisotropy in Ni18Fe19/CoO bilayers. J. Appl. Phys. 83, 6888–6892 (1998).

    Article  Google Scholar 

  9. Malozemoff, A. P. Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679–3682 (1987).

    Article  Google Scholar 

  10. Nowak, U. et al. Domain state model for exchange bias: I. Theory. Phys. Rev. B 66, 014430 (2002).

    Article  Google Scholar 

  11. Keller, J. et al. Domain state model for exchange bias: II. Experiment. Phys. Rev. B 66, 014431 (2002).

    Article  Google Scholar 

  12. Scholl, A. et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 1014–1016 (2000).

    Article  Google Scholar 

  13. Nolting, F. et al. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405, 767–769 (2000).

    Article  Google Scholar 

  14. Hillebrecht, F. U. et al. Magnetic moments at the surface of antiferromagnetic NiO(100). Phys. Rev. Lett. 86, 3419–3422 (2001).

    Article  Google Scholar 

  15. Weber, N. B., Ohldag, H., Gomonaj, H. & Hillebrecht, F. U. Magnetostrictive domain walls in antiferromagnetic NiO. Phys. Rev. Lett. 91, 237205 (2003).

    Article  Google Scholar 

  16. Pratzer, M. et al. Atomic-scale magnetic domain walls in quasi-one-dimensional Fe nanostripes. Phys. Rev. Lett. 87, 127201 (2001).

    Article  Google Scholar 

  17. Heinze, S. et al. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 288, 1805–1808 (2000).

    Article  Google Scholar 

  18. Kubetzka, A. et al. Revealing antiferromagnetic order of the Fe monolayer on W(001): Spin-polarized scanning tunneling microscopy and first-principles calculations. Phys. Rev. Lett. 94, 087204 (2005).

    Article  Google Scholar 

  19. Yang, H., Smith, A. R., Prikhodko, M. & Lambrecht, W. R. L. Atomic-scale spin-polarized scanning tunneling microscopy applied to Mn3N2(010) . Phys. Rev. Lett. 89, 226101 (2002).

    Article  Google Scholar 

  20. Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G. & Blügel, S. Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001).

    Article  Google Scholar 

  21. Bode, M. Spin-polarized scanning tunneling microscopy. Rep. Progr. Phys. 66, 523–582 (2003).

    Article  Google Scholar 

  22. Vedmedenko, E. Y., Grimm, U. & Wiesendanger, R. Noncollinear magnetic order in quasicrystals. Phys. Rev. Lett. 93, 076407 (2004).

    Article  Google Scholar 

  23. <http://www.flapw.de>.

  24. Chen, C. J. Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  25. Pietzsch, O., Kubetzka, A., Haude, D., Bode, M. & Wiesendanger, R. A low-temperature ultrahigh vacuum scanning tunneling microscope with a split-coil magnet and a rotary motion stepper motor for high spatial resolution studies of surface magnetisma. Rev. Sci. Instrum. 71, 424–430 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. M. Schneider (FZ Jülich) and U. Nowak (University of York, UK) for helpful discussions. Financial support from the DFG (SFB 668 and Graduate School ‘Design and characterization of functional materials’), from the EU project ASPRINT, from the Stifterverband für die Deutsche Wissenschaft, and from the Interdisciplinary Nanoscience Center Hamburg is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bode.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary movie 1 (MPG 9168 kb)

Supplementary Information

Supplementary movie legend (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bode, M., Vedmedenko, E., von Bergmann, K. et al. Atomic spin structure of antiferromagnetic domain walls. Nature Mater 5, 477–481 (2006). https://doi.org/10.1038/nmat1646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing