Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate

Abstract

The discovery of a giant dielectric constant1,2,3 of 105 in CaCu3Ti4O12 has increased interest in this perovskite-type oxide. Here we demonstrate that, in addition to high permittivity, CaCu3Ti4O12 has remarkably strong nonlinear current–voltage characteristics without the addition of any dopants. An intrinsic electrostatic barrier at the grain boundaries is responsible for the unusual nonlinear behaviour. The nonlinear coefficient of CaCu3Ti4O12 reaches a value of 900, which is even greater than that of the varistor material4 ZnO. As a result, CaCu3Ti4O12 may lead to efficient switching and gas-sensing devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current density–electric field (J–E) characteristics of sintered CaCu3Ti4O12.
Figure 2: Plot of current density against electric field.
Figure 3: Surface morphology with patterned gold electrodes, and I–V characteristics within single grains and across individual grain boundaries.
Figure 4: Surface topography and potential variations under a lateral bias (two- and three-dimensional).
Figure 5: TEM and selected area diffraction patterns.

Similar content being viewed by others

References

  1. Subramanian, M.A., Li, D., Duan, N., Reisner, B.A. & Sleight, A.W. High dielectric constants in ACu3Ti4O12 and ACu3Ti3FeO12 . J. Solid State Chem. 151, 323–325 (2000).

    Article  CAS  Google Scholar 

  2. Ramirez, A.P. et al. Giant dielectric constant response in a copper-titanate. Solid State Commun. 115, 217–220 (2000).

    Article  CAS  Google Scholar 

  3. Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S. & Ramirez, A.P. Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001).

    Article  CAS  Google Scholar 

  4. Clarke, D.R. Varistor ceramics. J. Am. Ceram. Soc. 82, 485–502 (1999).

    Article  CAS  Google Scholar 

  5. Moulson, A.J. & Herbert, J.M. Electroceramics: Materials, Properties and Applications 2nd edn (Wiley, New York, 2003).

    Book  Google Scholar 

  6. Chu, M.-W. et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nature Mater. 3, 87–90 (2004).

    Article  CAS  Google Scholar 

  7. Ren, X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nature Mater. 3, 91–94 (2004).

    Article  CAS  Google Scholar 

  8. Bochu, B. et al. Synthesis and characterization of a series of perovskite isotropes of [CaCu3](Mn4)O12 . J. Solid State Chem. 29, 291–298 (in French) (1979).

    Article  CAS  Google Scholar 

  9. He, L., Neaton, J.B., Cohen, M.H., Vanderbilt, D. & Homes, C.C. First-principle study of the structure and lattice dielectric response of CaCu3Ti4O12 . Phys. Rev. B 65, 214112 (2002).

    Article  Google Scholar 

  10. He, L., Neaton, J.B., Vanderbilt, D. & Cohen, M.H. Lattice dielectric response of CdCu3Ti4O12 and CaCu3Ti4O12 from first principles. Phys. Rev. B 67, 012103 (2003).

    Article  Google Scholar 

  11. Homes, C.C. et al. Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12 . Phys. Rev. B 67, 092106 (2003).

    Article  Google Scholar 

  12. Cohen, M.H., Neaton, J.B., He, L. & Vanderbilt, D. Extrinsic models for the dielectric response of CaCu3Ti4O12 . J. Appl. Phys. 94, 3299–3306 (2003).

    Article  CAS  Google Scholar 

  13. Sinclair, D.C., Adams, T.B., Morrison, F.D. & West, A.R. CaCu3Ti4O12: One-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153–2155 (2002).

    Article  CAS  Google Scholar 

  14. Adams, T.B., Sinclair, D.C. & West, A.R. Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14, 1321–1323 (2002).

    Article  CAS  Google Scholar 

  15. Si, W. et al. Epitaxial thin films of the giant-dielectric-constant material CaCu3Ti4O12 grown by pulsed-laser deposition. Appl. Phys. Lett. 81, 2056–2058 (2002).

    Article  CAS  Google Scholar 

  16. Chen, L. et al. High temperature electrical properties of highly epitaxial CaCu3Ti4O12 thin films on (001) LaAlO3 . Appl. Phys. Lett. 82, 2317–2319 (2003).

    Article  CAS  Google Scholar 

  17. Levinson, L.M. & Phillipp, H.R. Zinc oxide varistors–a review. Am. Ceram. Soc. Bull. 65, 639–646 (1986).

    CAS  Google Scholar 

  18. Gupta, K. Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990).

    Article  CAS  Google Scholar 

  19. Greuter, F. & Blatter, G. Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semicond. Sci. Technol. 5, 111–137 (1990).

    Article  CAS  Google Scholar 

  20. Pike, G.E. in Materials Science and Technology, Vol. 11, 731–754 (VCH, Weinheim, Germany, 1994).

    Google Scholar 

  21. Weaver, J.M.R. & Abraham, D.W. High resolution atomic force microscopy potentiometry. J. Vac. Sci. Technol. B, 16, 14–18 (1991).

    Google Scholar 

  22. Nonnenmacher, M., O'Boyle, M.P. & Wickramasinghe, H.K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991).

    Article  Google Scholar 

  23. Jacobs, H.O., Knapp, H.F., Müller, S. & Stemmer, A. Surface potential mapping: A qualitative material contrast in SPM. Ultramicroscopy, 69, 39–49 (1997).

    Article  CAS  Google Scholar 

  24. Huey, B.D., Lisjak, D. & Bonnell, D.A. Nanometer-scale variation in interface potential by scanning probe microscopy. J. Am. Ceram. Soc. 82, 1941–1944 (1999).

    Article  CAS  Google Scholar 

  25. Huey, B.D. & Bonnell, D.A. Spatially localized dynamic properties of individual interfaces in semiconducting oxides. Appl. Phys. Lett. 76, 1012–1014 (2000).

    Article  CAS  Google Scholar 

  26. Matsuoka, M. Nonohmic properties of zinc oxide ceramics. Jpn J. Appl. Phys. 10, 736–746 (1971).

    Article  CAS  Google Scholar 

  27. Chung, S.-Y. & Chiang, Y.-M. Microscale measurements of the electrical conductivity of doped LiFePO4 . Electrochem. Solid State Lett. 6, A278–A281 (2003).

    Article  CAS  Google Scholar 

  28. Kolodiazhnyi, T. et al. Thermoelectric power, Hall effect, and mobility of n-type BaTiO3 . Phys. Rev. B 68, 085205 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. L. Shaw of MIT for discussion on the Kelvin probe force microscopy. This research was supported by the Korea Science and Engineering Foundation, grant no. R05-2004-000-10168-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Yoon Chung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, SY., Kim, ID. & Kang, SJ. Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nature Mater 3, 774–778 (2004). https://doi.org/10.1038/nmat1238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing