Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dewetting of conducting polymer inkjet droplets on patterned surfaces

Abstract

The manufacture of high-performance electronic devices with micrometre or even submicrometre dimensions by solution processing and direct printing, requires the ability to control accurately the flow and spread of functional liquid inks on surfaces. This can be achieved with the help of surface-energy patterns causing inks to be repelled and dewetted from pre-defined regions of the substrate. To exploit this principle for the fabrication of submicrometre device structures, a detailed understanding of the factors causing ink droplets to dewet on patterned surfaces is required. Here, we use hydrophobic surface-energy barriers of different geometries to study the influence of solution viscosity, ink volume, and contact angle on the process of dewetting of inkjet-printed droplets of a water-based conducting polymer. We demonstrate polymer field-effect transistor devices with channel length of 500 nm fabricated by surface-energy-assisted inkjet printing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dewetting process.
Figure 2: Photographs of various dewetted PEDOT/PSS illustrating factors affecting dewetting.
Figure 3: The dewetting model.
Figure 4: AFM pictures of dewetted PEDOT/PSS.
Figure 5: Transfer (a,c) and output (b,d) characteristics of F8T2 top-gate transistors with width of 80 μm and a 30-nm mesa.

Similar content being viewed by others

References

  1. Garnier, F., Hajlaoui, R., Yassar, A. & Srivastava, P. All-polymer field-effect transistor realized by printing techniques. Science 265, 1684–1686 (1994).

    Article  CAS  Google Scholar 

  2. Bao, Z., Feng, Y., Dodabalapur, A., Raju, V.R. & Lovinger, A.J. High-performance plastic transistors fabricated by printing techniques. Chem. Mater. 9, 1299–1301 (1997).

    Article  CAS  Google Scholar 

  3. Paul, K.E., Wong, W.S., Ready, S.E. & Street, R.A. Additive jet printing of polymer thin-film transistors. Appl. Phys. Lett. 83, 2070–2072 (2003).

    Article  CAS  Google Scholar 

  4. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    Article  CAS  Google Scholar 

  5. Kagan, R., Breen, T.L. & Kosbar, L.L. Patterning organic–inorganic thin-film transistors using microcontact printed templates. Appl. Phys. Lett. 79, 3536–3538 (2001).

    Article  CAS  Google Scholar 

  6. Chabinyc, M.L., Wong, W.S., Salleo, A., Paul, K.E. & Street, R.A. Organic polymeric thin-film transistors fabricated by selective dewetting. Appl. Phys. Lett. 81, 4260–4262 (2002).

    Article  CAS  Google Scholar 

  7. Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283, 46–49 (1999).

    Article  CAS  Google Scholar 

  8. Lenz, P. & Lipowsky, R. Morphological transitions of wetting layers on structured surfaces. Phys. Rev. Lett. 80, 1920–1923 (1998).

    Article  CAS  Google Scholar 

  9. Brinkmann, M. & Lipowsky, R. Wetting morphologies on substrates with striped surface domains. J. Appl. Phys. 92, 4296–4306 (2002).

    Article  CAS  Google Scholar 

  10. Kargupta, K. & Sharma, A. Morphological self-organization by dewetting in thin films on chemically patterned substrates. J. Chem. Phys. 116, 3042–3051 (2002).

    Article  CAS  Google Scholar 

  11. Rascon, C. & Parry, A.O. Surface phase diagrams for wetting on heterogenous substrates. J. Chem. Phys. 115, 5258–5271 (2001).

    Article  CAS  Google Scholar 

  12. Darhuber, A.A., Troian, S.M., Miller, S.M. & Wagner, S. Morphology of liquid microstructures on chemically patterned surfaces. J. Appl. Phys. 87, 7768–7775 (2000).

    Article  CAS  Google Scholar 

  13. Bauer, C. & Dirtrich, S. Phase diagram for morphological transitions of wetting films on chemically structured substrates. Phys. Rev. E. 61, 1664–1669 (2000).

    Article  CAS  Google Scholar 

  14. Schneemilch, M., Quirke, N. & Henderson, J.R. Wetting of nanopatterned surfaces: the striped surface. J. Chem. Phys. 118, 816–829 (2003).

    Article  CAS  Google Scholar 

  15. Maboudian, R., Robert, A.W. & Carraro, C. Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sens. Actuat. 82, 219–223 (2000).

    Article  CAS  Google Scholar 

  16. Srinivasan, U., Houston, M.R., Howe, R.T. & Maboudian, R. Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines. J. Microelectromech. Syst. 7, 252–260 (1998).

    Article  CAS  Google Scholar 

  17. Bong, H.K. et al. A new organic modifier for anti-stiction. J. Microelectromech. Syst. 10, 33–40 (2001).

    Article  Google Scholar 

  18. Salleo, A., Chabinyc, M.L., Yang, M.S. & Street, R.A. Polymer thin-film transistors with chemically modified dielectric interfaces. Appl. Phys. Lett. 81, 4383–4385 (2002).

    Article  CAS  Google Scholar 

  19. Sirringhaus, H. et al. Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77, 406–408 (2000).

    Article  CAS  Google Scholar 

  20. Grell, M., Bradley, D.D.C., Ungar, G., Hill, J. & Whitehead, K.S. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 32, 5810–5817 (1999).

    Article  CAS  Google Scholar 

  21. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  CAS  Google Scholar 

  22. Collet, J. & Vuillaume, D. Nano-field effect transistor with an organic self-assembled monolayer as gate insulator. Appl. Phys. Lett. 73, 2681–2683 (1998).

    Article  CAS  Google Scholar 

  23. Collet, J., Tharaud, O., Chapoton, A. & Vuillaume, D. Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films. Appl. Phys. Lett. 76, 1941–1943 (2000).

    Article  CAS  Google Scholar 

  24. Austin, M.D. & Chou, S.Y. Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography. Appl. Phys. Lett. 81, 4431–4433 (2002).

    Article  CAS  Google Scholar 

  25. Zaumseil, J. et al. Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Appl. Phys. Lett. 82, 793–795 (2003).

    Article  CAS  Google Scholar 

  26. Stutzmann, N., Friend, R.H. & Sirringhaus, H. Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003).

    Article  CAS  Google Scholar 

  27. Gelinck, G.H., Geuns, T.C.T. & de Leeuw, D.M. High-performance all-polymer integrated circuits. Appl. Phys. Lett. 77, 1487–1489 (2000).

    Article  CAS  Google Scholar 

  28. Halik, M. et al. Fully patterned all-organic thin film transistors. Appl. Phys. Lett. 81, 289–291 (2002).

    Article  CAS  Google Scholar 

  29. Touwslager, F.J., Willard, N.P. & de Leeuw, D.M. I-Line lithography of poly-(3,4-ethylenedioxythiophene) electrodes and application in all-polymer integrated circuits. Appl. Phys. Lett. 81, 4556–4558 (2002).

    Article  CAS  Google Scholar 

  30. Blanchet, G.B., Loo, Y.L., Rogers, J.A., Gao, F. & Fincher, C.R. Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl. Phys. Lett. 82, 463–465 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Dow Chemical Company for supply of semiconducting polymers, and the Engineering and Physical Sciences Research Council (EPSRC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sirringhaus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zheng, Z., Li, H. et al. Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nature Mater 3, 171–176 (2004). https://doi.org/10.1038/nmat1073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing