Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche

Abstract

The repair of injured tendons remains a great challenge, largely owing to a lack of in-depth characterization of tendon cells and their precursors. We show that human and mouse tendons harbor a unique cell population, termed tendon stem/progenitor cells (TSPCs), that has universal stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity. The isolated TSPCs could regenerate tendon-like tissues after extended expansion in vitro and transplantation in vivo. Moreover, we show that TSPCs reside within a unique niche predominantly comprised of an extracellular matrix, and we identify biglycan (Bgn) and fibromodulin (Fmod) as two critical components that organize this niche. Depletion of Bgn and Fmod affects the differentiation of TSPCs by modulating bone morphogenetic protein signaling and impairs tendon formation in vivo. Our results, while offering new insights into the biology of tendon cells, may assist in future strategies to treat tendon diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation and characterization of TSPCs.
Figure 2: Multidifferentiation potential of putative mouse and human TSPCs in vitro and in vivo.
Figure 3: Self-renewal of putative tendon stem cells.
Figure 4: Regeneration potential of TSPCs.
Figure 5: The extracellular matrix niche dictates the fate of TSPCs.
Figure 6: Ectopic activation of BMP signaling induces ossification in Bgn−/0Fmod−/− mouse tendon tissue.

Similar content being viewed by others

References

  1. Sharma, P. & Maffulli, N. Biology of tendon injury: healing, modeling and remodeling. J. Musculoskelet. Neuronal Interact. 6, 181–190 (2006).

    CAS  PubMed  Google Scholar 

  2. Kannus, P. Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 10, 312–320 (2000).

    Article  CAS  Google Scholar 

  3. Yoon, J.H. & Halper, J. Tendon proteoglycans: biochemistry and function. J. Musculoskelet. Neuronal Interact. 5, 22–34 (2005).

    CAS  PubMed  Google Scholar 

  4. Fenwick, S. et al. Endochondral ossification in Achilles and patella tendinopathy. Rheumatology (Oxford) 41, 474–476 (2002).

    Article  CAS  Google Scholar 

  5. Salingcarnboriboon, R. et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp. Cell Res. 287, 289–300 (2003).

    Article  CAS  Google Scholar 

  6. de Mos, M. et al. Intrinsic differentiation potential of adolescent human tendon tissue: an in vitro cell differentiation study. BMC Musculoskelet. Disord. 8, 16 (2007).

    Article  Google Scholar 

  7. Seo, B.M. et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149–155 (2004).

    Article  CAS  Google Scholar 

  8. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    Article  CAS  Google Scholar 

  9. Taichman, R.S. & Emerson, S.G. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J. Exp. Med. 179, 1677–1682 (1994).

    Article  CAS  Google Scholar 

  10. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  Google Scholar 

  11. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  Google Scholar 

  12. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  Google Scholar 

  13. Shi, S. & Gronthos, S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res. 18, 696–704 (2003).

    Article  Google Scholar 

  14. Doherty, M.J. et al. Vascular pericytes express osteogenic potential in vitro and in vivo. J. Bone Miner. Res. 13, 828–838 (1998).

    Article  CAS  Google Scholar 

  15. Brent, A.E., Schweitzer, R. & Tabin, C.J. A somitic compartment of tendon progenitors. Cell 113, 235–248 (2003).

    Article  CAS  Google Scholar 

  16. DiCesare, P.E., Morgelin, M., Mann, K. & Paulsson, M. Cartilage oligomeric matrix protein and thrombospondin 1. Purification from articular cartilage, electron microscopic structure, and chondrocyte binding. Eur. J. Biochem. 223, 927–937 (1994).

    Article  CAS  Google Scholar 

  17. Brandau, O., Meindl, A., Fassler, R. & Aszodi, A. A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin-I. Dev. Dyn. 221, 72–80 (2001).

    Article  CAS  Google Scholar 

  18. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  Google Scholar 

  19. Van Vlasselaer, P., Falla, N., Snoeck, H. & Mathieu, E. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti–Sca-1 monoclonal antibody and wheat germ agglutinin. Blood 84, 753–763 (1994).

    CAS  PubMed  Google Scholar 

  20. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999).

    CAS  PubMed  Google Scholar 

  21. Tamaki, T. et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J. Cell Biol. 157, 571–577 (2002).

    Article  CAS  Google Scholar 

  22. Welm, B.E. et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev. Biol. 245, 42–56 (2002).

    Article  CAS  Google Scholar 

  23. Miura, Y. et al. Defective osteogenesis of the stromal stem cells predisposes CD18-null mice to osteoporosis. Proc. Natl. Acad. Sci. USA 102, 14022–14027 (2005).

    Article  CAS  Google Scholar 

  24. Simmons, P.J. & Torok-Storb, B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78, 55–62 (1991).

    CAS  PubMed  Google Scholar 

  25. Filshie, R.J. et al. MUC18, a member of the immunoglobulin superfamily, is expressed on bone marrow fibroblasts and a subset of hematological malignancies. Leukemia 12, 414–421 (1998).

    Article  CAS  Google Scholar 

  26. Kuznetsov, S.A. et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12, 1335–1347 (1997).

    Article  CAS  Google Scholar 

  27. Bi, Y. et al. Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. J. Biol. Chem. 280, 30481–30489 (2005).

    Article  CAS  Google Scholar 

  28. Krebsbach, P.H. et al. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63, 1059–1069 (1997).

    Article  CAS  Google Scholar 

  29. Bickenbach, J.R. Identification and behavior of label-retaining cells in oral mucosa and skin. J. Dent. Res. 60, 1611–1620 (1981).

    Article  Google Scholar 

  30. Ameye, L. et al. Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J. 16, 673–680 (2002).

    Article  CAS  Google Scholar 

  31. Cotsarelis, G., Sun, T.T. & Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  Google Scholar 

  32. Morris, R.J. & Potten, C.S. Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif. 27, 279–289 (1994).

    Article  CAS  Google Scholar 

  33. Booth, C. & Potten, C.S. Gut instincts: thoughts on intestinal epithelial stem cells. J. Clin. Invest. 105, 1493–1499 (2000).

    Article  CAS  Google Scholar 

  34. Scadden, D.T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  CAS  Google Scholar 

  35. Krause, D.S. Regulation of hematopoietic stem cell fate. Oncogene 21, 3262–3269 (2002).

    Article  CAS  Google Scholar 

  36. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    Article  CAS  Google Scholar 

  37. Moore, K.A. & Lemischka, I.R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    Article  CAS  Google Scholar 

  38. Blanpain, C. & Fuchs, E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 22, 339–373 (2006).

    Article  CAS  Google Scholar 

  39. Garcion, E., Halilagic, A., Faissner, A. & Ffrench-Constant, C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131, 3423–3432 (2004).

    Article  CAS  Google Scholar 

  40. Nilsson, S.K. et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106, 1232–1239 (2005).

    Article  CAS  Google Scholar 

  41. Ohta, M., Sakai, T., Saga, Y., Aizawa, S. & Saito, M. Suppression of hematopoietic activity in tenascin-C–deficient mice. Blood 91, 4074–4083 (1998).

    CAS  PubMed  Google Scholar 

  42. Stier, S. et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201, 1781–1791 (2005).

    Article  CAS  Google Scholar 

  43. Schweitzer, R. et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128, 3855–3866 (2001).

    CAS  Google Scholar 

  44. Awad, H.A. et al. Autologous mesenchymal stem cell–mediated repair of tendon. Tissue Eng. 5, 267–277 (1999).

    Article  CAS  Google Scholar 

  45. Hoffmann, A. et al. Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J. Clin. Invest. 116, 940–952 (2006).

    Article  CAS  Google Scholar 

  46. Kuznetsov, S.A., Friedenstein, A.J. & Robey, P.G. Factors required for bone marrow stromal fibroblast colony formation in vitro. Br. J. Haematol. 97, 561–570 (1997).

    Article  CAS  Google Scholar 

  47. Gimble, J.M. et al. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J. Cell. Biochem. 58, 393–402 (1995).

    Article  CAS  Google Scholar 

  48. Johnstone, B., Hering, T.M., Caplan, A.I., Goldberg, V.M. & Yoo, J.U. In vitro chondrogenesis of bone marrow–derived mesenchymal progenitor cells. Exp. Cell Res. 238, 265–272 (1998).

    Article  CAS  Google Scholar 

  49. Kostenuik, P.J., Halloran, B.P., Morey-Holton, E.R. & Bikle, D.D. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells. Am. J. Physiol. 273, E1133–E1139 (1997).

    CAS  PubMed  Google Scholar 

  50. Lopez-Rovira, T., Chalaux, E., Massague, J., Rosa, J.L. & Ventura, F. Direct binding of Smad1 and Smad4 to two distinct motifs mediates bone morphogenetic protein–specific transcriptional activation of Id1 gene. J. Biol. Chem. 277, 3176–3185 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Division of Intramural Research, US National Institute of Dental and Craniofacial Research, US National Institutes of Health and by an extramural grant from the US National Institutes of Health (US National Heart, Lung, and Blood Institute R01 HL61589-01 for L.Z.). We thank Å. Oldberg, University of Lund, Sweden for providing Fmod-deficient mice; P. Robey for advice and discussion on this work; H. Wimer, N. Marino, S. Kuznetsov and N. Cherman for technical assistance; and P. Vyomesh for his help with the isolation of mouse dermal fibroblasts.

Author information

Authors and Affiliations

Authors

Contributions

Y.B. designed and performed the majority of the experiments, analyzed data and prepared the manuscript. D.E. performed, collected and analyzed the FACS data; T.M.K. maintained animals, assisted with in vivo experiments and collected tissue samples; C.A.I. performed nucleofection and luciferase reporter assays; M.C.E. and W.S. assisted with immunohistochemistry staining and L.L. prepared paraffin-embedded tissue sections. A.I.L. provided human samples. B.-M.S. helped with in vitro multipotent differentiation assays and in vivo transplantation. L.Z. designed the FACS analysis and helped with the preparation of the manuscript. S.S. designed the key experiments and prepared the manuscript. M.F.Y. performed RT-PCR and prepared the manuscript.

Corresponding authors

Correspondence to Songtao Shi or Marian F Young.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–5, Supplementary Methods (PDF 851 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, Y., Ehirchiou, D., Kilts, T. et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13, 1219–1227 (2007). https://doi.org/10.1038/nm1630

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1630

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing