Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells

Abstract

The variability in the prognosis of individuals with hepatocellular carcinoma (HCC) suggests that HCC may comprise several distinct biological phenotypes. These phenotypes may result from activation of different oncogenic pathways during tumorigenesis and/or from a different cell of origin. Here we address whether the transcriptional characteristics of HCC can provide insight into the cellular origin of the tumor. We integrated gene expression data from rat fetal hepatoblasts and adult hepatocytes with HCC from human and mouse models. Individuals with HCC who shared a gene expression pattern with fetal hepatoblasts had a poor prognosis. The gene expression program that distinguished this subtype from other types of HCC included markers of hepatic oval cells, suggesting that HCC of this subtype may arise from hepatic progenitor cells. Analyses of gene networks showed that activation of AP-1 transcription factors in this newly identified HCC subtype might have key roles in tumor development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hierarchical cluster analysis of integrated gene expression data from rat hepatoblasts and hepatocytes, and from mouse and human HCC.
Figure 2: Construction of prediction models and evaluation of predicted outcome.
Figure 3: Three distinctive subtypes of HCC defined by gene expression patterns.
Figure 4: Cross-comparison of gene lists from two independent statistical tests.
Figure 5: Gene networks of AP-1 transcription factors in the HB subtype of HCC.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Parkin, D.M., Bray, F., Ferlay, J. & Pisani, P. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94, 153–156 (2001).

    Article  CAS  Google Scholar 

  2. El Serag, H.B. & Mason, A.C. Rising incidence of hepatocellular carcinoma in the United States. N. Engl. J. Med. 340, 745–750 (1999).

    Article  CAS  Google Scholar 

  3. Bruix, J., Boix, L., Sala, M. & Llovet, J.M. Focus on hepatocellular carcinoma. Cancer Cell 5, 215–219 (2004).

    Article  CAS  Google Scholar 

  4. Llovet, J.M. et al. Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology 29, 62–67 (1999).

    Article  CAS  Google Scholar 

  5. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  6. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  Google Scholar 

  7. Ross, D.T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24, 227–235 (2000).

    Article  CAS  Google Scholar 

  8. Roskams, T.A., Libbrecht, L. & Desmet, V.J. Progenitor cells in diseased human liver. Semin. Liver Dis. 23, 385–396 (2003).

    Article  CAS  Google Scholar 

  9. Lee, J.S. et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat. Genet. 36, 1306–1311 (2004).

    Article  CAS  Google Scholar 

  10. Lee, J.S., Grisham, J.W. & Thorgeirsson, S.S. Comparative functional genomics for identifying models of human cancer. Carcinogenesis 26, 1013–1020 (2005).

    Article  CAS  Google Scholar 

  11. Petkov, P.M. et al. Gene expression pattern in hepatic stem/progenitor cells during rat fetal development using complementary DNA microarrays. Hepatology 39, 617–627 (2004).

    Article  CAS  Google Scholar 

  12. Dabeva, M.D. & Shafritz, D.A. Hepatic stem cells and liver repopulation. Semin. Liver Dis. 23, 349–362 (2003).

    Article  CAS  Google Scholar 

  13. Thorgeirsson, S.S. & Grisham, J.W. Overview of recent experimental studies on liver stem cells. Semin. Liver Dis. 23, 303–312 (2003).

    Article  CAS  Google Scholar 

  14. Lee, J.S. et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40, 667–676 (2004).

    Article  CAS  Google Scholar 

  15. Chambers, A.F. & Matrisian, L.M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89, 1260–1270 (1997).

    Article  CAS  Google Scholar 

  16. Andreasen, P.A., Egelund, R. & Petersen, H.H. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell. Mol. Life Sci. 57, 25–40 (2000).

    Article  CAS  Google Scholar 

  17. Chang, C. & Werb, Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 11, S37–S43 (2001).

    Article  CAS  Google Scholar 

  18. Jothy, S. CD44 and its partners in metastasis. Clin. Exp. Metastasis 20, 195–201 (2003).

    Article  CAS  Google Scholar 

  19. Yu, Y. et al. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat. Med. 10, 175–181 (2004).

    Article  CAS  Google Scholar 

  20. Khanna, C. et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat. Med. 10, 182–186 (2004).

    Article  CAS  Google Scholar 

  21. Curto, M. & McClatchey, A.I. Ezrin.a metastatic detERMinant? Cancer Cell 5, 113–114 (2004).

    Article  CAS  Google Scholar 

  22. Martin, T.A., Harrison, G., Mansel, R.E. & Jiang, W.G. The role of the CD44/ezrin complex in cancer metastasis. Crit. Rev. Oncol. Hematol. 46, 165–186 (2003).

    Article  Google Scholar 

  23. Kondo, K. et al. Risk factors for early death after liver resection in patients with solitary hepatocellular carcinoma. J. Hepatobiliary Pancreat. Surg. 12, 399–404 (2005).

    Article  Google Scholar 

  24. Gouillat, C., Manganas, D., Saguier, G., Duque-Campos, R. & Berard, P. Resection of hepatocellular carcinoma in cirrhotic patients: longterm results of a prospective study. J. Am. Coll. Surg. 189, 282–290 (1999).

    Article  CAS  Google Scholar 

  25. Lee, J.S. & Thorgeirsson, S.S. Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets. Gastroenterology 127, S51–S55 (2004).

    Article  CAS  Google Scholar 

  26. Kitano, H. Cancer robustness: tumour tactics. Nature 426, 125 (2003).

    Article  CAS  Google Scholar 

  27. Postic, C. & Magnuson, M.A. DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis 26, 149–150 (2000).

    Article  CAS  Google Scholar 

  28. Pinkert, C.A., Ornitz, D.M., Brinster, R.L. & Palmiter, R.D. An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. 1, 268–276 (1987).

    Article  CAS  Google Scholar 

  29. Huh, C.G. et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc. Natl. Acad. Sci. USA 101, 4477–4482 (2004).

    Article  CAS  Google Scholar 

  30. Ferrando, A.A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87 (2002).

    Article  CAS  Google Scholar 

  31. Sarraf, C. et al. Cell behavior in the acetylaminofluorene-treated regenerating rat liver. Light and electron microscopic observations. Am. J. Pathol. 145, 1114–1126 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Eferl, R. et al. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 112, 181–192 (2003).

    Article  CAS  Google Scholar 

  33. Hilberg, F., Aguzzi, A., Howells, N. & Wagner, E.F. c-jun is essential for normal mouse development and hepatogenesis. Nature 365, 179–181 (1993).

    Article  CAS  Google Scholar 

  34. Logan, C.Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  Google Scholar 

  35. Lee, J.S. & Thorgeirsson, S.S. Genetic profiling of human hepatocellular carcinoma. Semin. Liver Dis. 25, 125–132 (2005).

    Article  CAS  Google Scholar 

  36. Robrechts, C. et al. Primary liver tumour of intermediate (hepatocyte-bile duct cell) phenotype: a progenitor cell tumour? Liver 18, 288–293 (1998).

    Article  CAS  Google Scholar 

  37. Libbrecht, L., Desmet, V., Van Damme, B. & Roskams, T. The immunohistochemical phenotype of dysplastic foci in human liver: correlation with putative progenitor cells. J. Hepatol. 33, 76–84 (2000).

    Article  CAS  Google Scholar 

  38. Wu, P.C. et al. Classification of hepatocellular carcinoma according to hepatocellular and biliary differentiation markers. Clinical and biological implications. Am. J. Pathol. 149, 1167–1175 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Uenishi, T. et al. Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence. Cancer Sci. 94, 851–857 (2003).

    Article  CAS  Google Scholar 

  40. Durnez, A. et al. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. Hepatology (in the press).

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the US National Institutes of Health, National Cancer Institute, Center for Cancer Research. L. Libbrecht is a “postdoctoraal onderzoeker” of the “F.W.O.-Vlaanderen.” I.-S. Chu is supported by a grant from the Ministry of Science and Technology (21C Frontier Functional Human Genome Project), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snorri S Thorgeirsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Gene networks from PathwayAssist. (PDF 332 kb)

Supplementary Fig. 2

Expression of hepatic oval cell marker genes in human HCC. (PDF 25 kb)

Supplementary Fig. 3

Comparison of proliferation and apoptosis indices among subtypes of HCC. (PDF 21 kb)

Supplementary Table 1

Top 10 list of gene networks from Ingenuity Pathway Analysis. (PDF 35 kb)

Supplementary Table 2

Clinical and pathological features of HCC patients. (PDF 8 kb)

Supplementary Table 3

Univariate and multivariate Cox proportional hazard regression analyses of HCC. (PDF 8 kb)

Supplementary Note (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Heo, J., Libbrecht, L. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12, 410–416 (2006). https://doi.org/10.1038/nm1377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing