Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis

Abstract

Increased glucose production is a hallmark of type 2 diabetes and alterations in lipid metabolism have a causative role in its pathophysiology. Here we postulate that physiological increments in plasma fatty acids can be sensed within the hypothalamus and that this sensing is required to balance their direct stimulatory action on hepatic gluconeogenesis. In the presence of physiologically-relevant increases in the levels of plasma fatty acids, negating their central action on hepatic glucose fluxes through (i) inhibition of the hypothalamic esterification of fatty acids, (ii) genetic deletion (Sur1-deficient mice) of hypothalamic KATP channels or pharmacological blockade (KATP blocker) of their activation by fatty acids, or (iii) surgical resection of the hepatic branch of the vagus nerve led to a marked increase in liver glucose production. These findings indicate that a physiological elevation in circulating lipids can be sensed within the hypothalamus and that a defect in hypothalamic lipid sensing disrupts glucose homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Central activation of KATP channels is required for hepatic autoregulation during lipid infusion.
Figure 2: Mechanism by which central antagonism of KATP channels impairs hepatic auto-regulation in response to lipid infusion.
Figure 3: Esterification of LCFA and activation of KATP within the mediobasal hypothalamus are each required for hepatic auto-regulation during lipid infusions.
Figure 4: Systemic lipid infusions increased glucose production in Sur1KO but not in wild-type (WT) mice.
Figure 5: The hepatic branch of the vagus nerve is required for hepatic auto-regulation in response to systemic lipid infusions.
Figure 6: Mechanism by which hepatic branch vagotomy impairs hepatic auto-regulation in response to lipid infusions.

Similar content being viewed by others

References

  1. Taylor, S.I. Deconstructing type 2 diabetes. Cell 97, 9–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. McGarry, J.D. What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258, 766–770 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. McGarry, J.D. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51, 7–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46, 3–10 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Shulman, G.I. Cellular mechanisms of insulin resistance. J. Clin. Invest 106, 171–176 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lam, T.K. et al. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am. J. Physiol. Endocrinol. Metab. 284, E863–E873 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Boden, G., Chen, X., Ruiz, J., White, J.V. & Rossetti, L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J. Clin. Invest. 93, 2438–2446 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lam, T.K., van de Werve, G. & Giacca, A. Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites. Am. J. Physiol. Endocrinol. Metab. 284, E281–E290 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Rebrin, K., Steil, G.M., Mittelman, S.D. & Bergman, R.N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J. Clin. Invest. 98, 741–749 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sindelar, D.K. et al. The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog. Diabetes 46, 187–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Chu, C.A. et al. Effects of free fatty acids on hepatic glycogenolysis and gluconeogenesis in conscious dogs. Am. J. Physiol. Endocrinol. Metab. 282, E402–E411 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, X., Iqbal, N. & Boden, G. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J. Clin. Invest. 103, 365–372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boden, G., Chen, X., Capulong, E. & Mozzoli, M. Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 50, 810–816 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Miller, J.C., Gnaedinger, J.M. & Rapoport, S.I. Utilization of plasma fatty acid in rat brain: distribution of [14C]palmitate between oxidative and synthetic pathways. J. Neurochem. 49, 1507–1514 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Loftus, T.M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Obici, S. et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51, 271–275 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Obici, S., Feng, Z., Arduini, A., Conti, R. & Rossetti, L. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat. Med. 9, 756–761 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Obici, S., Zhang, B.B., Karkanias, G. & Rossetti, L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8, 1376–1382 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Matsuhisa, M. et al. Important role of the hepatic vagus nerve in glucose uptake and production by the liver. Metabolism 49, 11–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Moore, M.C. et al. Effect of hepatic nerves on disposition of an intraduodenal glucose load. Am. J. Physiol 265, E487–E496 (1993).

    CAS  PubMed  Google Scholar 

  21. Xue, C. et al. Isolated hepatic cholinergic denervation impairs glucose and glycogen metabolism. J. Surg. Res. 90, 19–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Aguilar-Bryan, L. et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268, 423–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Aguilar-Bryan, L. & Bryan, J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20, 101–135 (1999).

    CAS  PubMed  Google Scholar 

  24. Seino, S. & Miki, T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol. 81, 133–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Inagaki, N. et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16, 1011–1017 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Branstrom, R., Corkey, B.E., Berggren, P.O. & Larsson, O. Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic beta cells. J. Biol. Chem. 272, 17390–17394 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Gribble, F.M., Proks, P., Corkey, B.E. & Ashcroft, F.M. Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. J. Biol. Chem. 273, 26383–26387 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Morgan, K., Obici, S. & Rossetti, L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J. Biol. Chem. 279, 31139–31148 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, J. et al. Overfeeding rapidly induces leptin and insulin resistance. Diabetes 50, 2786–2791 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Flier, J.S. Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Wojtczak, A.B., Walajtys-Rode, E.I. & Geelen, M.J. Interrelations between ureogenesis and gluconeogenesis in isolated hepatocytes. The role of antion transport and the competition for energy. Biochem. J. 170, 379–385 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williamson, J.R., Kreisberg, R.A. & Felts, P.W. Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc. Natl. Acad. Sci. USA 56, 247–254 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clore, J.N., Glickman, P.S., Nestler, J.E. & Blackard, W.G. In vivo evidence for hepatic autoregulation during FFA-stimulated gluconeogenesis in normal humans. Am. J. Physiol. 261, E425–E429 (1991).

    CAS  PubMed  Google Scholar 

  34. Roden, M. et al. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 49, 701–707 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Williamson, J.R., Browning, E.T. & Scholz, R. Control mechanisms of gluconeogenesis and ketogenesis. I. Effects of oleate on gluconeogenesis in perfused rat liver. J. Biol. Chem. 244, 4607–4616 (1969).

    CAS  PubMed  Google Scholar 

  36. Pocai, A., Obici, S., Schwartz, G.J. & Rossetti, L. A brain-liver circuit regulates glucose homeostasis. Cell Metab. 1, 53–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. McKhann, G.M., D'Ambrosio, R. & Janigro, D. Heterogeneity of astrocyte resting membrane potentials and intercellular coupling revealed by whole-cell and gramicidin-perforated patch recordings from cultured neocortical and hippocampal slice astrocytes. J. Neurosci. 17, 6850–6863 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dunn-Meynell, A.A., Rawson, N.E. & Levin, B.E. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. 814, 41–54 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Miki, T. et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat. Neurosci. 4, 507–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Vatamaniuk, M.Z., Horyn, O.V., Vatamaniuk, O.K. & Doliba, N.M. Acetylcholine affects rat liver metabolism via type 3 muscarinic receptors in hepatocytes. Life Sci. 72, 1871–1882 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Obici, S. et al. Central melanocortin receptors regulate insulin action. J. Clin. Invest. 108, 1079–1085 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morton, G.J. et al. Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (fa(k)/fa(k)) rats. Endocrinology 144, 2016–2024 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Combs, T.P., Berg, A.H., Obici, S., Scherer, P.E. & Rossetti, L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108, 1875–1881 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hansen, A.M. et al. Differential interactions of nateglinide and repaglinide on the human beta-cell sulphonylurea receptor 1. Diabetes 51, 2789–2795 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Tomoda, H., Igarashi, K., Cyong, J.C. & Omura, S. Evidence for an essential role of long chain acyl-CoA synthetase in animal cell proliferation. Inhibition of long chain acyl-CoA synthetase by triacsins caused inhibition of Raji cell proliferation. J. Biol. Chem. 266, 4214–4219 (1991).

    CAS  PubMed  Google Scholar 

  46. Barzilai, N. et al. Leptin selectively decreases visceral adiposity and enhances insulin action. J. Clin. Invest. 100, 3105–3110 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. la Fleur, S.E., Ji, H., Manalo, S.L., Friedman, M.I. & Dallman, M.F. The hepatic vagus mediates fat-induced inhibition of diabetic hyperphagia. Diabetes 52, 2321–2330 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Norgren, R. & Smith, G.P. A method for selective section of vagal afferent or efferent axons in the rat. Am. J. Physiol. 267, R1136–R1141 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Sclafani, A., Ackroff, K. & Schwartz, G.J. Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients. Physiol. Behav. 78, 285–294 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank B. Liu, J. Liu, C. Baveghems and S. Gaweda for technical assistance. This work was supported by grants from the US National Institutes of Health (to L. Rossetti, DK 45024, DK 48321 and AG 21654; to G. J. Schwartz, DK 47208; to J. Bryan, DK52771; to L. Aguilar-Bryan, DK57671), from the Albert Einstein College of Medicine Diabetes Research & Training Center (DK 20541). S. Obici is the recipient of a Junior Faculty Award from the American Diabetes Association. T.K.T. Lam is supported by a Training Grant from the National Institute of Aging (T32-AG023475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Rossetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Tracer verification of the placement of hypothalamic cannulae. (PDF 15 kb)

Supplementary Fig. 2

Hypothalamic expression of SUR1. (PDF 19 kb)

Supplementary Fig. 3

Pivotal role of efferent vagal input to the liver in modulating glucose kinetics. (PDF 69 kb)

Supplementary Fig. 4

Increased lipid availability rapidly induces hyperglycemia in overfed rats. (PDF 22 kb)

Supplementary Table 1

Characteristics of the experimental groups before, during and after the pancreatic clamp glibenclamide studies (PDF 25 kb)

Supplementary Table 2

Glibenclamide studies: specific activities of hepatic substrates used to calculate the direct pathway and the indirect pathway in rats receiving systemic lipid infusions (PDF 22 kb)

Supplementary Table 3

Characteristics of the Sur1 knockout (Sur1KO) vs. WT mice before and during the lipid pancreatic clamp studies (PDF 20 kb)

Supplementary Table 4

Characteristics of the experimental groups before, during and after the pancreatic clamp hepatic vagotomy studies (PDF 25 kb)

Supplementary Table 5

Hepatic vagotomy studies: specific activities of hepativ substrates used to calculate the direct pathway nd the indirect pathway in rats receiving systemic lipid infusions (PDF 21 kb)

Supplementary Methods (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, T., Pocai, A., Gutierrez-Juarez, R. et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 11, 320–327 (2005). https://doi.org/10.1038/nm1201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing