Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumor adaptation and resistance to RAF inhibitors

Subjects

Abstract

RAF kinase inhibitors have substantial therapeutic effects in patients with BRAF-mutant melanoma. However, only rarely do tumors regress completely, and the therapeutic effects are often temporary. Several mechanisms of resistance to RAF inhibitors have been proposed. The majority of these cause ERK signaling to become insensitive to treatment with RAF inhibitors by increasing the amount of RAF dimers in cells, whereas others bypass the dependence of the tumor on mutant RAF. One motivation for studying mechanisms of drug resistance is that such efforts may suggest new therapeutic targets or rational combination strategies that delay or prevent the emergence of drug-resistant clones. Here, we review the current model of RAF inhibitor resistance with a focus on the implications of this model on ongoing laboratory and clinical efforts to develop more effective therapeutic strategies for patients with BRAF-mutant tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ERK signaling under physiologic conditions and in tumors harboring BRAF V600E mutations.

Neil Smith

Figure 2: RAF inhibitor resistance mechanisms that result in reactivated ERK signaling in the presence of drug.

Neil Smith

Figure 3: Adaptation to RAF inhibitors in tumors harboring BRAF V600E mutations.

Neil Smith

Similar content being viewed by others

References

  1. Kolch, W., Heidecker, G., Lloyd, P. & Rapp, U.R. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349, 426–428 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Kyriakis, J.M. et al. Raf-1 activates MAP kinase-kinase. Nature 358, 417–421 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Rapp, U.R. et al. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc. Natl. Acad. Sci. USA 80, 4218–4222 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moelling, K., Heimann, B., Beimling, P., Rapp, U.R. & Sander, T. Serine- and threonine-specific protein kinase activities of purified gag-mil and gag-raf proteins. Nature 312, 558–561 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Nimnual, A. & Bar-Sagi, D. The two hats of SOS. Sci. STKE 2002, pe36 (2002).

    Article  PubMed  Google Scholar 

  7. Boguski, M.S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–654 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Cutler, R.E. Jr., Stephens, R.M., Saracino, M.R. & Morrison, D.K. Autoregulation of the Raf-1 serine/threonine kinase. Proc. Natl. Acad. Sci. USA 95, 9214–9219 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chong, H. & Guan, K.L. Regulation of Raf through phosphorylation and N terminus-C terminus interaction. J. Biol. Chem. 278, 36269–36276 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Dhillon, A.S. et al. Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol. Cell. Biol. 22, 3237–3246 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clark, G.J. et al. 14-3-3 z negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain. J. Biol. Chem. 272, 20990–20993 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Light, Y., Paterson, H. & Marais, R. 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity. Mol. Cell. Biol. 22, 4984–4996 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ory, S., Zhou, M., Conrads, T.P., Veenstra, T.D. & Morrison, D.K. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr. Biol. 13, 1356–1364 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Abraham, D. et al. Raf-1–associated protein phosphatase 2A as a positive regulator of kinase activation. J. Biol. Chem. 275, 22300–22304 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, X.F. et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308–313 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Warne, P.H., Viciana, P.R. & Downward, J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352–355 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Vojtek, A.B., Hollenberg, S.M. & Cooper, J.A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Moodie, S.A., Willumsen, B.M., Weber, M.J. & Wolfman, A. Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658–1661 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Williams, J.G. et al. Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. J. Biol. Chem. 275, 22172–22179 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Bondeva, T., Balla, A., Varnai, P. & Balla, T. Structural determinants of Ras-Raf interaction analyzed in live cells. Mol. Biol. Cell 13, 2323–2333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mott, H.R. et al. The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site. Proc. Natl. Acad. Sci. USA 93, 8312–8317 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marais, R., Light, Y., Paterson, H.F., Mason, C.S. & Marshall, C.J. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem. 272, 4378–4383 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Mason, C.S. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137–2148 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fabian, J.R., Daar, I.O. & Morrison, D.K. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol. Cell. Biol. 13, 7170–7179 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tran, N.H., Wu, X. & Frost, J.A. B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms. J. Biol. Chem. 280, 16244–16253 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Udell, C.M., Rajakulendran, T., Sicheri, F. & Therrien, M. Mechanistic principles of RAF kinase signaling. Cell. Mol. Life Sci. 68, 553–565 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, B.H. & Guan, K.L. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J. 19, 5429–5439 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farrar, M.A., Alberol-Ila, J. & Perlmutter, R.M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383, 178–181 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Luo, Z. et al. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383, 181–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Rushworth, L.K., Hindley, A.D., O'Neill, E. & Kolch, W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol. Cell. Biol. 26, 2262–2272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan, P.T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Grbovic, O.M. et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl. Acad. Sci. USA 103, 57–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Tzivion, G. & Avruch, J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J. Biol. Chem. 277, 3061–3064 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Brennan, D.F. et al. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature 472, 366–369 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Clapéron, A. & Therrien, M. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 26, 3143–3158 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. Matallanas, D. et al. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2, 232–260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Roskoski, R. Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66, 105–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 12, 104–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Li, X., Huang, Y., Jiang, J. & Frank, S.J. ERK-dependent threonine phosphorylation of EGF receptor modulates receptor downregulation and signaling. Cell. Signal. 20, 2145–2155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corbalan-Garcia, S., Yang, S.S., Degenhardt, K.R. & Bar-Sagi, D. Identification of the mitogen-activated protein kinase phosphorylation sites on human Sos1 that regulate interaction with Grb2. Mol. Cell. Biol. 16, 5674–5682 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Douville, E. & Downward, J. EGF induced SOS phosphorylation in PC12 cells involves P90 RSK-2. Oncogene 15, 373–383 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. von Kriegsheim, A. et al. Cell fate decisions are specified by the dynamic ERK interactome. Nat. Cell Biol. 11, 1458–1464 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Dougherty, M.K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Häfner, S. et al. Mechanism of inhibition of Raf-1 by protein kinase A. Mol. Cell. Biol. 14, 6696–6703 (1994).

    PubMed  PubMed Central  Google Scholar 

  47. Balan, V. et al. Identification of novel in vivo Raf-1 phosphorylation sites mediating positive feedback Raf-1 regulation by extracellular signal-regulated kinase. Mol. Biol. Cell 17, 1141–1153 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pagès, G., Brunet, A., L'Allemain, G. & Pouyssegur, J. Constitutive mutant and putative regulatory serine phosphorylation site of mammalian MAP kinase kinase (MEK1). EMBO J. 13, 3003–3010 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pratilas, C.A. et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc. Natl. Acad. Sci. USA 106, 4519–4524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Joseph, E.W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF–selective manner. Proc. Natl. Acad. Sci. USA 107, 14903–14908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39, 503–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Brondello, J.M., Brunet, A., Pouyssegur, J. & McKenzie, F.R. The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J. Biol. Chem. 272, 1368–1376 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, H.J. & Bar-Sagi, D. Modulation of signalling by Sprouty: a developing story. Nat. Rev. Mol. Cell Biol. 5, 441–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Hanafusa, H., Torii, S., Yasunaga, T. & Nishida, E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat. Cell Biol. 4, 850–858 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Mason, J.M. et al. Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol. Biol. Cell 15, 2176–2188 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sasaki, A. et al. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Cell Cycle 2, 281–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Stowe, I.B. et al. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes Dev. 26, 1421–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Tiacci, E. et al. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364, 2305–2315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Andreadi, C. et al. The intermediate-activity L597VBRAF mutant acts as an epistatic modifier of oncogenic RAS by enhancing signaling through the RAF/MEK/ERK pathway. Genes Dev. 26, 1945–1958 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poulikakos, P.I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lito, P. et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsavachidou, D. et al. SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res. 64, 5556–5559 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Flaherty, K.T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chapman, P.B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hauschild, A. et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380, 358–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Flaherty, K.T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xing, F. et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene 31, 446–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Sosman, J.A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Solit, D.B. & Rosen, N. Resistance to BRAF inhibition in melanomas. N. Engl. J. Med. 364, 772–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Heidorn, S.J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Solit, D.B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Oberholzer, P.A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lacouture, M.E., O'Reilly, K., Rosen, N. & Solit, D.B. Induction of cutaneous squamous cell carcinomas by RAF inhibitors: cause for concern? J. Clin. Oncol. 30, 329–330 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Callahan, M.K. et al. Progression of RAS-mutant leukemia during RAF inhibitor treatment. N. Engl. J. Med. 367, 2316–2321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kopetz, S. et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J. Clin. Oncol. 28 (suppl.), abstr. 3534 (2010).

    Article  Google Scholar 

  81. Planchard, D. et al. Interim results of phase II study BRF113928 of dabrafenib in BRAF V600E mutation–positive non-small cell lung cancer (NSCLC) patients. J. Clin. Oncol. 31 (suppl.), abstr. 8009 (2013).

    Article  Google Scholar 

  82. Yang, H. et al. Antitumor activity of BRAF inhibitor vemurafenib in preclinical models of BRAF-mutant colorectal cancer. Cancer Res. 72, 779–789 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maertens, O. et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discov. 3, 338–349 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Whittaker, S.R. et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 3, 350–362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Whittaker, S. et al. Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci. Transl. Med. 2, 35ra41 (2010).

    Article  PubMed  CAS  Google Scholar 

  87. Weisbart, R.H. et al. BRAF splice variants in rheumatoid arthritis synovial fibroblasts activate MAPK through CRAF. Mol. Immunol. 55, 247–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Shi, H. et al. Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3, 724 (2012).

    Article  PubMed  CAS  Google Scholar 

  89. Montagut, C. et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 68, 4853–4861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Johannessen, C.M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Antony, R., Emery, C.M., Sawyer, A.M. & Garraway, L.A. C-RAF mutations confer resistance to RAF inhibitors. Cancer Res. 73, 4840–4851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29, 3085–3096 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shi, H. et al. Preexisting MEK1 exon 3 mutations in V600E/KBRAF melanomas do not confer resistance to BRAF inhibitors. Cancer Discov. 2, 414–424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wilson, T.R. et al. Widespread potential for growth-factor–driven resistance to anticancer kinase inhibitors. Nature 487, 505–509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Girotti, M.R. et al. Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov. 3, 158–167 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Montero-Conde, C. et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF mutant thyroid carcinomas. Cancer Discov. 3, 520–533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. O'Reilly, K.E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carver, B.S. et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19, 575–586 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chandarlapaty, S. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19, 58–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Corcoran, R.B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Flaherty, K.T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Falchook, G.S. et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 13, 782–789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Morris, E.J. et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 3, 742–750 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Smalley, K.S. et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol. Cancer Ther. 7, 2876–2883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Freeman, A.K., Ritt, D.A. & Morrison, D.K. Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol. Cell 49, 751–758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sievert, A.J. et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc. Natl. Acad. Sci. USA 110, 5957–5962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B Solit.

Ethics declarations

Competing interests

D.B.S. has served as a consultant to Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lito, P., Rosen, N. & Solit, D. Tumor adaptation and resistance to RAF inhibitors. Nat Med 19, 1401–1409 (2013). https://doi.org/10.1038/nm.3392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing