Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections

Subjects

Abstract

Total anomalous pulmonary venous connection (TAPVC) is a potentially lethal congenital disorder that occurs when the pulmonary veins do not connect normally to the left atrium, allowing mixing of pulmonary and systemic blood1. In contrast to the extensive knowledge of arterial vascular patterning, little is known about the patterning of veins. Here we show that the secreted guidance molecule semaphorin 3d (Sema3d) is crucial for the normal patterning of pulmonary veins. Prevailing models suggest that TAPVC occurs when the midpharyngeal endothelial strand (MES), the precursor of the common pulmonary vein, does not form at the proper location on the dorsal surface of the embryonic common atrium2,3. However, we found that TAPVC occurs in Sema3d mutant mice despite normal formation of the MES. In these embryos, the maturing pulmonary venous plexus does not anastomose uniquely with the properly formed MES. In the absence of Sema3d, endothelial tubes form in a region that is normally avascular, resulting in aberrant connections. Normally, Sema3d provides a repulsive cue to endothelial cells in this area, establishing a boundary. Sequencing of SEMA3D in individuals with anomalous pulmonary veins identified a phenylalanine-to-leucine substitution that adversely affects SEMA3D function. These results identify Sema3d as a crucial pulmonary venous patterning cue and provide experimental evidence for an alternate developmental model to explain abnormal pulmonary venous connections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sema3d−/− mice have TAPVC.
Figure 2: Pulmonary vein patterning defects are present in Sema3d−/− embryos as early as E10.5.
Figure 3: Sema3d-expressing cells form a boundary that restricts the pulmonary endothelium.
Figure 4: Sema3d binds to Nrp-1 and is capable of repelling endothelial cells.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Brody, H. Drainage of the pulmonary veins into the right side of the heart. Arch. Pathol. (Chic) 33, 221 (1942).

    Google Scholar 

  2. Lucas, R.V. Jr., Amplatz, K., Adams, P. Jr., Anderson, R.C. & Edwards, J.E. Congenital causes of pulmonary venous obstruction. J. Pediatr. 61, 281–282 (1962).

    Article  PubMed  Google Scholar 

  3. Lucas, R.V. Jr., Lock, J.E., Tandon, R. & Edwards, J.E. Gross and histologic anatomy of total anomalous pulmonary venous connections. Am. J. Cardiol. 62, 292–300 (1988).

    Article  PubMed  Google Scholar 

  4. Seale, A.N. et al. Total anomalous pulmonary venous connection: morphology and outcome from an international population-based study. Circulation 122, 2718–2726 (2010).

    Article  PubMed  Google Scholar 

  5. Adachi, B. Das Venensystem der Japaner 1st edn (Kenkyusha, Tokyo, 1933).

  6. Healey, J.E. Jr. An anatomic survey of anomalous pulmonary veins: their clinical significance. J. Thorac. Surg. 23, 433–444 (1952).

    PubMed  Google Scholar 

  7. Hughes, C.W. & Rumore, P.C. Anomalous pulmonary veins. Arch. Pathol. (Chic) 37, 364–366 (1944).

    Google Scholar 

  8. Kalke, B.R., Carlson, R.G., Ferlic, R.M., Sellers, R.D. & Lillehei, C.W. Partial anomalous pulmonary venous connections. Am. J. Cardiol. 20, 91–101 (1967).

    Article  CAS  PubMed  Google Scholar 

  9. Burroughs, J.T. & Edwards, J.E. Total anomalous pulmonary venous connection. Am. Heart J. 59, 913–931 (1960).

    Article  CAS  PubMed  Google Scholar 

  10. Auer, J. The development of the human pulmonary vein and its major variations. Anat. Rec. 101, 581–594 (1948).

    Article  CAS  PubMed  Google Scholar 

  11. Sizarov, A. et al. Three-dimensional and molecular analysis of the arterial pole of the developing human heart. J. Anat. 220, 336–349 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. DeRuiter, M.C., Gittenberger-De Groot, A.C., Wenink, A.C., Poelmann, R.E. & Mentink, M.M. In normal development pulmonary veins are connected to the sinus venosus segment in the left atrium. Anat. Rec. 243, 84–92 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Douglas, Y.L., Jongbloed, M.R., Deruiter, M.C. & Gittenberger-de Groot, A.C. Normal and abnormal development of pulmonary veins: state of the art and correlation with clinical entities. Int. J. Cardiol. 147, 13–24 (2011).

    Article  PubMed  Google Scholar 

  14. Keane, J.F., Lock, J.E., Fyler, D.C. & Nadas, A.S. Nadas' Pediatric Cardiology (Saunders Elsevier, Philadelphia, 2006).

  15. Moss, A.J. & Allen, H.D. Moss and Adams' Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult (Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, 2008).

  16. van den Berg, G. & Moorman, A.F. Development of the pulmonary vein and the systemic venous sinus: an interactive 3D overview. PLoS ONE 6, e22055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bleyl, S. et al. A gene for familial total anomalous pulmonary venous return maps to chromosome 4p13-q12. Am. J. Hum. Genet. 56, 408–415 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bleyl, S.B. et al. Analysis of a Scottish founder effect narrows the TAPVR-1 gene interval to chromosome 4q12. Am. J. Med. Genet. A. 140, 2368–2373 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Bleyl, S.B. et al. Dysregulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms. Hum. Mol. Genet. 19, 1286–1301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cinquetti, R. et al. Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return. Hum. Mutat. 29, 468–474 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Kigel, B., Varshavsky, A., Kessler, O. & Neufeld, G. Successful inhibition of tumor development by specific class-3 semaphorins is associated with expression of appropriate semaphorin receptors by tumor cells. PLoS ONE 3, e3287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kruger, R.P., Aurandt, J. & Guan, K.L. Semaphorins command cells to move. Nat. Rev. Mol. Cell Biol. 6, 789–800 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Larrivée, B., Freitas, C., Suchting, S., Brunet, I. & Eichmann, A. Guidance of vascular development: lessons from the nervous system. Circ. Res. 104, 428–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Gu, C. et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307, 265–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Feiner, L. et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128, 3061–3070 (2001).

    CAS  PubMed  Google Scholar 

  26. Berndt, J.D. & Halloran, M.C. Semaphorin 3d promotes cell proliferation and neural crest cell development downstream of TCF in the zebrafish hindbrain. Development 133, 3983–3992 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Sato, M., Tsai, H.J. & Yost, H.J. Semaphorin3D regulates invasion of cardiac neural crest cells into the primary heart field. Dev. Biol. 298, 12–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Katz, T.C. et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 22, 639–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, Y., Gunput, R.A. & Pasterkamp, R.J. Semaphorin signaling: progress made and promises ahead. Trends Biochem. Sci. 33, 161–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Herzog, Y., Guttmann-Raviv, N. & Neufeld, G. Segregation of arterial and venous markers in subpopulations of blood islands before vessel formation. Dev. Dyn. 232, 1047–1055 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Pellet-Many, C. et al. Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell migration and signalling via p130Cas. Biochem. J. 435, 609–618 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Evans, I.M. et al. Neuropilin-1 signaling through p130Cas tyrosine phosphorylation is essential for growth factor–dependent migration of glioma and endothelial cells. Mol. Cell Biol. 31, 1174–1185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koppel, A.M., Feiner, L., Kobayashi, H. & Raper, J.A. A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron 19, 531–537 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Renzi, M.J., Feiner, L., Koppel, A.M. & Raper, J.A. A dominant negative receptor for specific secreted semaphorins is generated by deleting an extracellular domain from neuropilin-1. J. Neurosci. 19, 7870–7880 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, Q. et al. Rapid and efficient human mutation detection using a bench-top next-generation DNA sequencer. Hum. Mutat. 33, 281–289 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Luzón-Toro, B. et al. Mutational spectrum of Semaphorin 3A and Semaphorin 3D genes in Spanish Hirschsprung patients. PLoS ONE 8, e54800 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chauvet, S. et al. Gating of Sema3E/PlexinD1 signaling by neuropilin-1 switches axonal repulsion to attraction during brain development. Neuron 56, 807–822 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Riccomagno, M.M. et al. The RacGAP β2-chimaerin selectively mediates axonal pruning in the hippocampus. Cell 149, 1594–1606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Silversides, C.K. et al. Rare copy number variations in adults with tetralogy of fallot implicate novel risk gene pathways. PLoS Genet. 8, e1002843 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katz, T.C. et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 22, 639–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Degenhardt, K., Wright, A.C., Horng, D., Padmanabhan, A. & Epstein, J.A. Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining. Circ. Cardiovasc. Imaging 3, 314–322 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yokomizo, T. et al. Whole-mount three-dimensional imaging of internally localized immunostained cells within mouse embryos. Nat. Protoc. 7, 421–431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh, M.K., Lu, M.M., Massera, D. & Epstein, J.A. MicroRNA-processing enzyme Dicer is required in epicardium for coronary vasculature development. J. Biol. Chem. 286, 41036–41045 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Merte, J. et al. A forward genetic screen in mice identifies Sema3A(K108N), which binds to neuropilin-1 but cannot signal. J. Neurosci. 30, 5767–5775 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gitler, A.D., Lu, M.M. & Epstein, J.A. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev. Cell 7, 107–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Gu, C. et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307, 265–268 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S.B. Bleyl for helpful comments and critical reading of the manuscript, N.A. Speck for technical assistance and B. Gelb and V. Garg for assistance with genetic analyses. This work was supported by US National Institutes of Health (NIH) grants NIH 5K12HD043245-07 (K.D.), NIH 5K08KL094763-02 (K.D.), NIH T32 GM07229 (H.A.) and NIH UO1 HL100405 (J.A.E.), the Spain Fund (J.A.E.) and the WW Smith Endowed Chair (J.A.E.).

Author information

Authors and Affiliations

Authors

Contributions

K.D., M.K.S., H.A. and J.A.E. performed project planning, experimental work, data interpretation and preparation of the manuscript. D.M., Q.W., J.L., L.L., C.C. and A.D.Y. performed experimental work. L.J.F., E.G., I.D.K. and P.J.G. participated in the identification of SEMA3D variants. J.A.E. supervised all aspects of the research.

Corresponding author

Correspondence to Jonathan A Epstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Table 1 (PDF 1939 kb)

Supplementary Video 1

Echocardiograms showing normal chamber sizes in a wild type mouse heart, as compared to right-sided chamber dilatation a Sema3d–/– mouse heart. First, a single cardiac cycle from a control mouse is shown at slow speed. Note that the right ventricle (RV) and right atrium (RA) are relatively small compared to the left ventricle (LV) and left atrium (LA) in this view. Next, an echocardiogram of a Sema3d–/– mouse (Sema3d mutant) with TAPVC shows a single cardiac cycle at slow speed. Note that the right ventricle (RV) and right atrium (RA) are very large compared to the left ventricle (LV) and left atrium (LA) in this view. Right-sided chamber dilation results from persistent left-to-right shunting of blood. (MOV 597 kb)

Supplementary Video 2

Volume rendered microCT of a newborn mouse to highlight vascular connections. The movie begins in a left lateral view and the image is rotated to a dorsal view with cranial angulation. LA – left atrium, LV – left ventricle, LSVC – left superior vena cava, CS – coronary sinus, PV - pulmonary veins, RA – right atrium, RSVC – right superior vena cava. (MOV 717 kb)

Supplementary Video 3

Optical projection tomography of a heart-lung block dissected from control and Sema3d mutant E12.5 mouse embryos. First, multiplanar reconstruction (MPR) at a roughly cross sectional plane moving from anterior to posterior allows one to follow the course of the pulmonary vein (arrow) from the lung to the left atrium in the control. Next, similar MPR planes show an E12.5 Sema3d–/– embryo and traces the course of a pulmonary vein from the lung to the coronary sinus (CS), which then connects to the right atrium. (MOV 409 kb)

Supplementary Video 4

Sema3d repels endothelial cells in culture, while control HEK293 cells do not, and Sema3d (F602L) variant has a markedly reduced ability to repel compared to Sema3d. Timelapse microphotographs (20 × magnification, 5 min intervals per frame) of HEK293 cells (arrows) co-cultured with HUVECs. The HEK293 cells were infected with a lentiviral vector for wild type Sema3d, GFP or variant Sema3d (F602L). Note that the HUVECs are repelled and do not make contact with the cell overexpressing Sema3d. The control-GFP expressing cell contacts and intermingles with the HUVECs. The cell expressing Sema3d (F602L) has a reduced ability to repel. (MOV 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degenhardt, K., Singh, M., Aghajanian, H. et al. Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nat Med 19, 760–765 (2013). https://doi.org/10.1038/nm.3185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing