Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy

Abstract

Hepatitis C virus (HCV) is a major cause of liver disease, but therapeutic options are limited and there are no prevention strategies. Viral entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen, we identified epidermal growth factor receptor and ephrin receptor A2 as host cofactors for HCV entry. Blocking receptor kinase activity by approved inhibitors broadly impaired infection by all major HCV genotypes and viral escape variants in cell culture and in a human liver chimeric mouse model in vivo. The identified receptor tyrosine kinases (RTKs) mediate HCV entry by regulating CD81–claudin-1 co-receptor associations and viral glycoprotein–dependent membrane fusion. These results identify RTKs as previously unknown HCV entry cofactors and show that tyrosine kinase inhibitors have substantial antiviral activity. Inhibition of RTK function may constitute a new approach for prevention and treatment of HCV infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EGFR is a cofactor for HCV entry.
Figure 2: Inhibition of EGFR activation by kinase inhibitors reduces HCV entry and infection.
Figure 3: Modulation of HCV entry by EGFR ligands and an EGFR-specific antibody.
Figure 4: EGFR mediates HCV entry at postbinding steps by promoting CD81-CLDN1 co-receptor interactions and membrane fusion.
Figure 5: Functional role of EGFR in viral cell-to-cell transmission and spread.
Figure 6: Erlotinib modulates HCV kinetics and inhibits infection in vivo.

Similar content being viewed by others

References

  1. Tai, A.W. & Chung, R.T. Treatment failure in hepatitis C: mechanisms of non-response. J. Hepatol. 50, 412–420 (2009).

    Article  CAS  Google Scholar 

  2. Hézode, C. et al. Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N. Engl. J. Med. 360, 1839–1850 (2009).

    Article  Google Scholar 

  3. Timpe, J.M. et al. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 47, 17–24 (2008).

    Article  Google Scholar 

  4. Zeisel, M.B., Cosset, F.L. & Baumert, T.F. Host neutralizing responses and pathogenesis of hepatitis C virus infection. Hepatology 48, 299–307 (2008).

    Article  CAS  Google Scholar 

  5. von Hahn, T. & Rice, C.M. Hepatitis C virus entry. J. Biol. Chem. 283, 3689–3693 (2008).

    Article  CAS  Google Scholar 

  6. Barth, H. et al. Viral and cellular determinants of the hepatitis C virus envelope–heparan sulfate interaction. J. Virol. 80, 10579–10590 (2006).

    Article  CAS  Google Scholar 

  7. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    Article  CAS  Google Scholar 

  8. Scarselli, E. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21, 5017–5025 (2002).

    Article  CAS  Google Scholar 

  9. Evans, M.J. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805 (2007).

    Article  CAS  Google Scholar 

  10. Ploss, A. et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882–886 (2009).

    Article  CAS  Google Scholar 

  11. Hidalgo, M. & Bloedow, D. Pharmacokinetics and pharmacodynamics: maximizing the clinical potential of erlotinib (Tarceva). Semin. Oncol. 30, 25–33 (2003).

    Article  CAS  Google Scholar 

  12. Shepherd, F.A. et al. Erlotinib in previously treated non–small-cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    Article  CAS  Google Scholar 

  13. Li, J. et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat. Chem. Biol. 6, 291–299 (2010).

    Article  CAS  Google Scholar 

  14. Fafi-Kremer, S. et al. Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation. J. Exp. Med. 207, 2019–2031 (2010).

    Article  CAS  Google Scholar 

  15. Mee, C.J. et al. Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells. J. Virol. 83, 6211–6221 (2009).

    Article  CAS  Google Scholar 

  16. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002).

    Article  CAS  Google Scholar 

  17. Thoresen, G.H. et al. Response to transforming growth factor α (TGFα) and epidermal growth factor (EGF) in hepatocytes: lower EGF receptor affinity of TGFα is associated with more sustained activation of p42/p44 mitogen-activated protein kinase and greater efficacy in stimulation of DNA synthesis. J. Cell. Physiol. 175, 10–18 (1998).

    Article  CAS  Google Scholar 

  18. Dreux, M. et al. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog. 5, e1000310 (2009).

    Article  Google Scholar 

  19. Krieger, S.E. et al. Inhibition of hepatitis C virus infection by anti–claudin-1 antibodies is mediated by neutralization of E2–CD81–claudin-1 associations. Hepatology 51, 1144–1157 (2010).

    Article  CAS  Google Scholar 

  20. Koutsoudakis, G. et al. Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J. Virol. 80, 5308–5320 (2006).

    Article  CAS  Google Scholar 

  21. Zeisel, M.B. et al. Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology 46, 1722–1731 (2007).

    Article  CAS  Google Scholar 

  22. Dreux, M. et al. High density lipoprotein inhibits hepatitis C virus-neutralizing antibodies by stimulating cell entry via activation of the scavenger receptor BI. J. Biol. Chem. 281, 18285–18295 (2006).

    Article  CAS  Google Scholar 

  23. Harris, H.J. et al. Claudin association with CD81 defines hepatitis C virus entry. J. Biol. Chem. 285, 21092–21102 (2010).

    Article  CAS  Google Scholar 

  24. Harris, H.J. et al. CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J. Virol. 82, 5007–5020 (2008).

    Article  CAS  Google Scholar 

  25. Lavillette, D. et al. Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. J. Virol. 81, 8752–8765 (2007).

    Article  CAS  Google Scholar 

  26. Witteveldt, J. et al. CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. J. Gen. Virol. 90, 48–58 (2009).

    Article  CAS  Google Scholar 

  27. Hiraga, N. et al. Absence of viral interference and different susceptibility to interferon between hepatitis B virus and hepatitis C virus in human hepatocyte chimeric mice. J. Hepatol. 51, 1046–1054 (2009).

    Article  CAS  Google Scholar 

  28. Kamiya, N. et al. Practical evaluation of a mouse with chimeric human liver model for hepatitis C virus infection using an NS3–4A protease inhibitor. J. Gen. Virol. 91, 1668–1677 (2010).

    Article  CAS  Google Scholar 

  29. Meuleman, P. et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology 41, 847–856 (2005).

    Article  CAS  Google Scholar 

  30. Higgins, B. et al. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non–small cell lung cancer tumor xenograft models. Anticancer Drugs 15, 503–512 (2004).

    Article  CAS  Google Scholar 

  31. Schneider, M.R. & Wolf, E. The epidermal growth factor receptor ligands at a glance. J. Cell. Physiol. 218, 460–466 (2009).

    Article  CAS  Google Scholar 

  32. Lackmann, M. & Boyd, A.W. Eph, a protein family coming of age: more confusion, insight, or complexity? Sci. Signal. 1, re2 (2008).

    Article  Google Scholar 

  33. Singh, A.B. & Harris, R.C. Epidermal growth factor receptor activation differentially regulates claudin expression and enhances transepithelial resistance in Madin-Darby canine kidney cells. J. Biol. Chem. 279, 3543–3552 (2004).

    Article  CAS  Google Scholar 

  34. Flores-Benitez, D. et al. Control of tight junctional sealing: roles of epidermal growth factor and prostaglandin E2. Am. J. Physiol. Cell Physiol. 297, C611–C620 (2009).

    Article  CAS  Google Scholar 

  35. Blanchard, E. et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol. 80, 6964–6972 (2006).

    Article  CAS  Google Scholar 

  36. Reiter, J.L. & Maihle, N.J. A 1.8 kb alternative transcript from the human epidermal growth factor receptor gene encodes a truncated form of the receptor. Nucleic Acids Res. 24, 4050–4056 (1996).

    Article  CAS  Google Scholar 

  37. McCole, D.F., Keely, S.J., Coffey, R.J. & Barrett, K.E. Transactivation of the epidermal growth factor receptor in colonic epithelial cells by carbachol requires extracellular release of transforming growth factor-α. J. Biol. Chem. 277, 42603–42612 (2002).

    Article  CAS  Google Scholar 

  38. Miao, H. et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16, 9–20 (2009).

    Article  CAS  Google Scholar 

  39. Pestka, J.M. et al. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proc. Natl. Acad. Sci. USA 104, 6025–6030 (2007).

    Article  CAS  Google Scholar 

  40. Rothenberg, S.M. et al. Modeling oncogene addiction using RNA interference. Proc. Natl. Acad. Sci. USA 105, 12480–12484 (2008).

    Article  CAS  Google Scholar 

  41. Bartosch, B., Dubuisson, J. & Cosset, F.L. Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J. Exp. Med. 197, 633–642 (2003).

    Article  CAS  Google Scholar 

  42. Pietschmann, T. et al. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc. Natl. Acad. Sci. USA 103, 7408–7413 (2006).

    Article  CAS  Google Scholar 

  43. Kato, T. et al. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125, 1808–1817 (2003).

    Article  CAS  Google Scholar 

  44. Lavillette, D. et al. Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology 41, 265–274 (2005).

    Article  Google Scholar 

  45. Frecha, C. et al. Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus GP displaying lentiviral vectors. Blood 114, 3173–3180 (2009).

    Article  CAS  Google Scholar 

  46. Sandrin, V. et al. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 100, 823–832 (2002).

    Article  CAS  Google Scholar 

  47. Fofana, I. et al. Monoclonal anti–claudin 1 antibodies prevent hepatitis C virus infection of primary human hepatocytes. Gastroenterology 139, 953–964, 964.e1–e4 (2010).

    Article  CAS  Google Scholar 

  48. Meunier, J.C. et al. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus. J. Virol. 82, 966–973 (2008).

    Article  CAS  Google Scholar 

  49. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    Article  CAS  Google Scholar 

  50. van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054 (1993).

    Article  CAS  Google Scholar 

  51. Wang, Y. et al. Negative regulation of EphA2 receptor by Cbl. Biochem. Biophys. Res. Commun. 296, 214–220 (2002).

    Article  CAS  Google Scholar 

  52. Chahbouni, A., den Burger, J.C., Vos, R.M., Sinjewel, A. & Wilhelm, A.J. Simultaneous quantification of erlotinib, gefitinib and imatinib in human plasma by liquid chromatography tandem mass spectrometry. Ther. Drug Monit. 31, 683–687 (2009).

    Article  CAS  Google Scholar 

  53. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC-2008-AdG-233130-HEPCENT), INTERREG-IV-Rhin Supérieur-FEDER-Hepato-Regio-Net 2009, Agence Nationale de la Recherche (ANR-05-CEXC-008), Agence Nationale de Recherche sur le Sida 2008/354, Région Alsace, Institut National du Cancer, the Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Strasbourg, the US National Insititutes of Health (1K08DE020139-01A1), the UK Medical Research Council and the Wellcome Trust. We acknowledge A.-L. Morand, L. Froidevaux, A. Weiss, L. Poidevin, S. Durand and E. Soulier for excellent technical work. We thank R. Bartenschlager (University of Heidelberg) for providing Jc1 and Luc-Jc1 expression vectors, J. Ball (University of Nottingham) for UKN2A.2.4, UKN3A1.28 and UKN4.21.16 expression vectors, T. Wakita (National Institute of Infectious Diseases, Japan) for JFH1 constructs, C.M. Rice (The Rockefeller University) for Huh7.5 cells, F.V. Chisari (The Scripps Research Institute) for Huh7.5.1 cells, E. Harlow (Harvard University) for CDC2 expression plasmids and M. Tanaka (Hamamatsu University) for EphA2 expression plasmids.

Author information

Authors and Affiliations

Authors

Contributions

J.L., M.B.Z. and T.F.B. wrote the manuscript. J.L., M.B.Z., F.X., D.L., F.-L.C., J.A.M., and T.F.B. designed experiments and analyzed data. J.L., M.B.Z., F.X., C.T., I.F., L.Z., C.D., C.J.M., M.T., S.G., C.R., M.N.Z., D.L. and J.F. performed experiments. S.M.R., T.P., A.H.P., P.P. and M.D. contributed essential reagents. W.R. and O.P. performed bioinformatic analyses. J.L., B.F. and L.B. implemented and coordinated the siRNA screen. T.F.B. designed and supervised the project.

Corresponding author

Correspondence to Thomas F Baumert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Methods and Supplementary Figures 1–12 (PDF 2570 kb)

Supplementary Table 1

Supplementary Table 1 (XLS 203 kb)

Supplementary Table 2

Supplementary Table 2 (XLS 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupberger, J., Zeisel, M., Xiao, F. et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17, 589–595 (2011). https://doi.org/10.1038/nm.2341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing