Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell–dependent B cell responses

Abstract

Costimulation through the inducible costimulator (ICOS) and its ligand (ICOSL) is essential for T cell–dependent B cell responses, but the cellular and temporal dynamics underlying its in vivo effects are poorly defined. Here we have shown that Icosl−/− and Icos−/− mice had similar phenotypes and that ICOS-ICOSL costimulation modulated the early but not late phases of IgG1 affinity maturation. Exploiting the adoptive transfer of T or B cells from primed Icosl−/− mice, we provided genetic evidence that costimulation through ICOSL was essential for primary but not secondary helper T cell responses and for the control of both T and B cell activities, resulting in T cell–dependent IgG1 production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo ablation of mouse Icosl.
Figure 2: Reduced basal concentrations of IgG1.
Figure 3: Impaired germinal center formation.
Figure 4: Selective defect in TH2 differentiation.
Figure 5: Impaired affinity maturation.
Figure 6: Impaired IgE production and attenuation of allergic airway disease.
Figure 7: Partial rescue of defective IgG1 production by PEG-modified GM-CSF.
Figure 8: Cellular and temporal requirements for ICOS/B7RP-1 costimulation in TCD responses.

Similar content being viewed by others

References

  1. Swallow, M.M., Wallin, J.J. & Sha, W.C. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNF-α. Immunity 11, 423–432 (1999).

    Article  CAS  Google Scholar 

  2. Yoshinaga, S.K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  Google Scholar 

  3. Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999).

    Article  CAS  Google Scholar 

  4. Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  Google Scholar 

  5. Chapoval, A.I. et al. B7-H3: a costimulatory molecule for T cell activation and IFN-γ production. Nat. Immunol. 2, 269–274 (2001).

    Article  CAS  Google Scholar 

  6. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  Google Scholar 

  7. Carreno, B.M. & Collins, M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu. Rev. Immunol. 20, 29–53 (2002).

    Article  CAS  Google Scholar 

  8. Yoshinaga, S.K. et al. Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS. Int. Immunol. 12, 1439–1447 (2000).

    Article  CAS  Google Scholar 

  9. Liu, X. et al. B7H costimulates clonal expansion of, and cognate destruction of tumor cells by, CD8+ T lymphocytes in vivo. J. Exp. Med. 194, 1339–1348 (2001).

    Article  CAS  Google Scholar 

  10. Wallin, J.J., Liang, L., Bakardjiev, A. & Sha, W.C. Enhancement of CD8+ T cell responses by ICOS/B7h costimulation. J. Immunol. 167, 132–139 (2001).

    Article  CAS  Google Scholar 

  11. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  Google Scholar 

  12. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  Google Scholar 

  13. McAdam, A.J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  Google Scholar 

  14. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    Article  CAS  Google Scholar 

  15. Ozkaynak, E. et al. Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat. Immunol. 2, 591–596 (2001).

    Article  CAS  Google Scholar 

  16. Rottman, J.B. et al. The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat. Immunol. 2, 605–611 (2001).

    Article  CAS  Google Scholar 

  17. Gonzalo, J.A. et al. ICOS is critical for T helper cell-mediated lung mucosal inflammatory responses. Nat. Immunol. 2, 597–604 (2001).

    Article  CAS  Google Scholar 

  18. Rennert, P. et al. The IgV domain of human B7-2 (CD86) is sufficient to co-stimulate T lymphocytes and induce cytokine secretion. Int. Immunol. 9, 805–813 (1997).

    Article  CAS  Google Scholar 

  19. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  20. Finkelman, F.D. et al. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol. 8, 303–333 (1990).

    Article  CAS  Google Scholar 

  21. Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710 (1991).

    Article  CAS  Google Scholar 

  22. Snapper, C.M. & Paul, W.E. Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947 (1987).

    Article  CAS  Google Scholar 

  23. Matsumoto, M. et al. Affinity maturation without germinal centres in lymphotoxin-α-deficient mice. Nature 382, 462–466 (1996).

    Article  CAS  Google Scholar 

  24. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H. & Pfeffer, K. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    Article  CAS  Google Scholar 

  25. Ohkawara, Y. et al. Cytokine and eosinophil responses in the lung, peripheral blood, and bone marrow compartments in a murine model of allergen-induced airways inflammation. Am. J. Respir. Cell. Mol. Biol. 16, 510–520 (1997).

    Article  CAS  Google Scholar 

  26. Tarlinton, D.M., Light, A., Nossal, G.J. & Smith, K.G. Affinity maturation of the primary response by V gene diversification. Curr. Top. Microbiol. Immunol. 229, 71–83 (1998).

    CAS  PubMed  Google Scholar 

  27. Moser, M. & Murphy, K.M. Dendritic cell regulation of TH1-TH2 development. Nat. Immunol. 1, 199–205 (2000).

    Article  CAS  Google Scholar 

  28. Liu, Y.J., Kanzler, H., Soumelis, V. & Gilliet, M. Dendritic cell lineage, plasticity and cross-regulation. Nat. Immunol. 2, 585–589 (2001).

    Article  CAS  Google Scholar 

  29. Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA 96, 1036–1041 (1999).

    Article  CAS  Google Scholar 

  30. Daro, E. et al. Polyethylene glycol-modified GM-CSF expands CD11bhighCD11chigh but notCD11blowCD11chigh murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J. Immunol. 165, 49–58 (2000).

    Article  CAS  Google Scholar 

  31. Grusby, M.J. & Glimcher, L.H. Immune responses in MHC class II-deficient mice. Annu. Rev. Immunol. 13, 417–435 (1995).

    Article  CAS  Google Scholar 

  32. Liang, L., Porter, E.M. & Sha, W.C. Constitutive expression of the B7h ligand for inducible costimulator on naive B cells is extinguished after activation by distinct B cell receptor and interleukin 4 receptor-mediated pathways and can be rescued by CD40 signaling. J. Exp. Med. 196, 97–108 (2002).

    Article  CAS  Google Scholar 

  33. Ferguson, S.E., Han, S., Kelsoe, G. & Thompson, C.B. CD28 is required for germinal center formation. J. Immunol. 156, 4576–4581 (1996).

    CAS  PubMed  Google Scholar 

  34. Borriello, F. et al. B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity 6, 303–313 (1997).

    Article  CAS  Google Scholar 

  35. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  Google Scholar 

  36. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    Article  CAS  Google Scholar 

  37. Reiter, R. & Pfeffer, K. Impaired germinal centre formation and humoral immune response in the absence of CD28 and interleukin-4. Immunology 106, 222–228 (2002).

    Article  CAS  Google Scholar 

  38. McAdam, A.J. et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J. Immunol. 165, 5035–5040 (2000).

    Article  CAS  Google Scholar 

  39. Jaiswal, A.I. & Croft, M. CD40 ligand induction on T cell subsets by peptide-presenting B cells: implications for development of the primary T and B cell response. J. Immunol. 159, 2282–2291 (1997).

    CAS  PubMed  Google Scholar 

  40. Coyle, A.J., Lloyd, C.M. & Gutierrez-Ramos, J.C. Biotherapeutic targets for the treatment of allergic airway disease. Am. J. Respir. Crit. Care Med. 162, S179–184 (2000).

    Article  CAS  Google Scholar 

  41. Coyle, A.J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000).

    Article  CAS  Google Scholar 

  42. Tesciuba, A.G. et al. Inducible costimulator regulates TH2-mediated inflammation, but not TH2 differentiation, in a model of allergic airway disease. J. Immunol. 167, 1996–2003 (2001).

    Article  CAS  Google Scholar 

  43. Sporici, R.A. et al. ICOS ligand costimulation is required for T-cell encephalitogenicity. Clin. Immunol. 100, 277–288 (2001).

    Article  CAS  Google Scholar 

  44. Campbell, D.J., Kim, C.H. & Butcher, E.C. Separable effector T cell populations specialized for B cell help or tissue inflammation. Nat. Immunol. 2, 876–881 (2001).

    Article  CAS  Google Scholar 

  45. Sporici, R.A. & Perrin, P.J. Costimulation of memory T-cells by ICOS: a potential therapeutic target for autoimmunity? Clin. Immunol. 100, 263–269 (2001).

    Article  CAS  Google Scholar 

  46. Sperling, A.I. ICOS costimulation: is it the key to selective immunotherapy? Clin. Immunol. 100, 261–262 (2001).

    Article  CAS  Google Scholar 

  47. Hudson, L. & Hay, F.C. in Practical Immunology 2nd edn. (Blackwell Scientific Publications, St. Louis, MO, 1980).

    Google Scholar 

  48. Nishina, H. et al. Impaired CD28-mediated interleukin 2 production and proliferation in stress kinase SAPK/ERK1 kinase (SEK1)/mitogen-activated protein kinase kinase 4 (MKK4)-deficient T lymphocytes. J. Exp. Med. 186, 941–953 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Horan, M. Zhang, K. Gaida and D. Yanagihara for preparation of the 1B7 monoclonal antibody; G. Kelsoe, M.J. Schlomchik, K. Pfeffer, J. Dewey and A. Hebermann for help with the affinity maturation experiments; M. Bachmann for discussions; M. Saunders for scientific editing; and I. Ng for administrative assistance. This work was supported by the Canadian Institutes of Health Research, Amgen and the Canadian Network for Vaccines and Immunotherapeutics of Cancer and Chronic Viral Diseases.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tak W Mak or Anna Tafuri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, T., Shahinian, A., Yoshinaga, S. et al. Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell–dependent B cell responses. Nat Immunol 4, 765–772 (2003). https://doi.org/10.1038/ni947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing