Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice

Abstract

Immunity to infection with intracellular pathogens is regulated by interleukin 12 (IL-12), which mediates protective T helper type 1 (TH1) responses, or IL-4, which induces TH2 cells and susceptibility. Paradoxically, we show here that when present during the initial activation of dendritic cells (DCs) by infectious agents, IL-4 instructed DCs to produce IL-12 and promote TH1 development. This TH1 response established resistance to Leishmania major in susceptible BALB/c mice. When present later, during the period of T cell priming, IL-4 induced TH2 differentiation and progressive leishmaniasis in resistant mice. Because immune responses developed via the consecutive activation of DCs and then T cells, the contrasting effects of IL-4 on DC development and T cell differentiation led to immune responses that had opposing functional phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-4 instructs DCs to produce increased amounts of IL-12 and to promote TH1 development in vitro.
Figure 2: IL-4 instructs resistance to L. major in susceptible BALB/c mice.
Figure 3: IL-4 instructs parasite containment in susceptible BALB/c mice.
Figure 4: IL-4 treatment during the first 8 h of L. major infection instructs IL-12–producing DC1s and suppresses IL-4 expression.
Figure 5: Induction of TH1 responses with IL-4 depends on IL-12.
Figure 6: Treatment with anti–IL-12 abrogates IL-4–induced resistance to L. major in BALB/c mice.
Figure 7: Extension of IL-4 treatment into the period of T cell priming reverses IL-4–induced resistance to L. major.
Figure 8: Timing determines whether IL-4 treatment instructs a TH1 phenotype and resistance or a TH2 phenotype and susceptibility to L. major in TCR Vβ4-deficient mice.

Similar content being viewed by others

References

  1. Fearon, D. T. & Locksley, R. M. The instructive role of innate immunity in the acquired immune response. Science 272, 50–53 (1996).

    Article  CAS  Google Scholar 

  2. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  Google Scholar 

  3. Paul, W. E. & Seder, R. A. Lymphocyte responses and cytokines. Cell 76, 241–251 (1994).

    Article  CAS  Google Scholar 

  4. Reiner, S. L. & Locksley, R. M. The regulation of immunity to Leishmania major. Annu. Rev. Immunol. 13, 151–177 (1995).

    Article  CAS  Google Scholar 

  5. Heinzel, F. P., Schoenhaut, D. S., Rerko, R. M., Rosser, L. E. & Gately, M. K. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 177, 1505–1509 (1993).

    Article  CAS  Google Scholar 

  6. Sypek, J. P. et al. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J. Exp. Med. 177, 1797–802 (1993).

    Article  CAS  Google Scholar 

  7. Afonso, L. C. et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263, 235–237 (1994).

    Article  CAS  Google Scholar 

  8. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    Article  CAS  Google Scholar 

  9. Sadick, M. D. et al. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon γ-independent mechanism. J. Exp. Med. 171, 115–127 (1990).

    Article  CAS  Google Scholar 

  10. Yamamura, M. et al. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 254, 277–279 (1991).

    Article  CAS  Google Scholar 

  11. Racke, M. K. et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 180, 1961–1966 (1994).

    Article  CAS  Google Scholar 

  12. Launois, P. et al. IL-4 rapidly produced by Vβ4Vα8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 6, 541–549 (1997).

    Article  CAS  Google Scholar 

  13. Kopf, M. et al. IL-4-deficient Balb/c mice resist infection with Leishmania major. J. Exp. Med. 184, 1127–1136 (1996).

    Article  CAS  Google Scholar 

  14. Liblau, R. S., Singer, S. M. & McDevitt, H. O. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol. Today 16, 34–38 (1995).

    Article  CAS  Google Scholar 

  15. Rocken, M., Racke, M. & Shevach, E. M. IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol. Today 17, 225–231 (1996).

    Article  CAS  Google Scholar 

  16. Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146 (1996).

    Article  CAS  Google Scholar 

  17. Romagnani, S. Lymphokine production by human T cells in disease states. Annu. Rev. Immunol. 12, 227–257 (1994).

    Article  CAS  Google Scholar 

  18. King, C. et al. Interleukin-4 acts at the locus of the antigen-presenting dendritic cell to counter-regulate cytotoxic CD8+ T-cell responses. Nature Med. 7, 206–214 (2001).

    Article  CAS  Google Scholar 

  19. Erb, K. J. et al. Constitutive expression of interleukin (IL)-4 in vivo causes autoimmune-type disorders in mice. J. Exp. Med. 185, 329–339 (1997).

    Article  CAS  Google Scholar 

  20. Noben-Trauth, N., Kropf, P. & Muller, I. Susceptibility to Leishmania major infection in interleukin-4-deficient mice. Science 271, 987–990 (1996).

    Article  CAS  Google Scholar 

  21. Mencacci, A. et al. Endogenous interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans. J. Exp. Med. 187, 307–317 (1998).

    Article  CAS  Google Scholar 

  22. Schuler, T., Qin, Z., Ibe, S., Noben-Trauth, N. & Blankenstein, T. T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficient mice. J. Exp. Med. 189, 803–810 (1999).

    Article  CAS  Google Scholar 

  23. Bagley, J., Sawada, T., Wu, Y. & Iacomini, J. A critical role for interleukin 4 in activating alloreactive CD4 T cells. Nature Immunol. 1, 257–261 (2000).

    Article  CAS  Google Scholar 

  24. Salerno, A., Dieli, F., Sireci, G., Bellavia, A. & Asherson, G. L. Interleukin-4 is a critical cytokine in contact sensitivity. Immunology 84, 404–409 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Traidl, C., Jugert, F., Krieg, T., Merk, H. & Hunzelmann, N. Inhibition of allergic contact dermatitis to DNCB but not to oxazolone in interleukin-4-deficient mice. J. Invest. Dermatol. 112, 476–482 (1999).

    Article  CAS  Google Scholar 

  26. Yokozeki, H. et al. Signal transducer and activator of transcription 6 is essential in the induction of contact hypersensitivity. J. Exp. Med. 191, 995–1004 (2000).

    Article  CAS  Google Scholar 

  27. Radu, D. L., Noben-Trauth, N., Hu-Li, J., Paul, W. E. & Bona, C. A. A targeted mutation in the IL-4Rα gene protects mice against autoimmune diabetes. Proc. Natl Acad. Sci. USA 97, 12700–12704 (2000).

    Article  CAS  Google Scholar 

  28. Golumbek, P. T. et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254, 713–716 (1991).

    Article  CAS  Google Scholar 

  29. Tepper, R. I., Pattengale, P. K. & Leder, P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57, 503–512 (1989).

    Article  CAS  Google Scholar 

  30. Kalinski, P. et al. IL-4 is a mediator of IL-12p70 induction by human Th2 cells: reversal of polarized Th2 phenotype by dendritic cells. J. Immunol. 165, 1877–1881 (2000).

    Article  CAS  Google Scholar 

  31. Hochrein, H. et al. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J. Exp. Med. 192, 823–834 (2000).

    Article  CAS  Google Scholar 

  32. Ebner, S. et al. Production of IL-12 by human monocyte-derived dendritic cells is optimal when the stimulus is given at the onset of maturation, and is further enhanced by IL-4. J. Immunol. 166, 633–641 (2001).

    Article  CAS  Google Scholar 

  33. Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D. & Paul, W. E. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4- producing cells. J. Exp. Med. 172, 921–929 (1990).

    Article  CAS  Google Scholar 

  34. Bradley, L. M., Yoshimoto, K. & Swain, S. L. The cytokines IL-4, IFN-γ, and IL-12 regulate the development of subsets of memory effector helper T cells in vitro. J. Immunol. 155, 1713–1724 (1995).

    CAS  PubMed  Google Scholar 

  35. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  Google Scholar 

  36. Moser, M. & Murphy, K. M. Dendritic cell regulation of TH1-TH2 development. Nature Immunol. 1, 199–205 (2000).

    Article  CAS  Google Scholar 

  37. Moll, H., Fuchs, H., Blank, C. & Rollinghoff, M. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur. J. Immunol. 23, 1595–1601 (1993).

    Article  CAS  Google Scholar 

  38. Diefenbach, A., Schindler, H., Rollinghoff, M., Yokoyama, W. M. & Bogdan, C. Requirement for type 2 NO synthase for IL-12 signaling in innate immunity. Science 284, 951–955 (1999).

    Article  CAS  Google Scholar 

  39. Reiner, S. L., Zheng, S., Corry, D. B. & Locksley, R. M. Constructing polycompetitor cDNAs for quantitative PCR. J. Immunol. Meth. 165, 37–46 (1993).

    Article  CAS  Google Scholar 

  40. Zimmermann, S. et al. CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J. Immunol. 160, 3627–3630 (1998).

    CAS  PubMed  Google Scholar 

  41. Himmelrich, H. et al. In BALB/c mice, IL-4 production during the initial phase of infection with Leishmania major is necessary and sufficient to instruct Th2 cell development resulting in progressive disease. J. Immunol. 164, 4819–4825 (2000).

    Article  CAS  Google Scholar 

  42. Julia, V., Rassoulzadegan, M. & Glaichenhaus, N. Resistance to Leishmania major induced by tolerance to a single antigen. Science 274, 421–423 (1996).

    Article  CAS  Google Scholar 

  43. Carter, K. C., Gallagher, G., Baillie, A. J. & Alexander, J. The induction of protective immunity to Leishmania major in the BALB/c mouse by interleukin 4 treatment. Eur. J. Immunol. 19, 779–782 (1989).

    Article  CAS  Google Scholar 

  44. Koch, F. et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 184, 741–746 (1996).

    Article  CAS  Google Scholar 

  45. Munder, M., Eichmann, K. & Modolell, M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160, 5347–5354 (1998).

    CAS  PubMed  Google Scholar 

  46. Levine, A. D. et al. High level expression and refolding of mouse interleukin 4 synthesized in Escherichia coli. J. Biol. Chem. 270, 7445–7452 (1995).

    Article  CAS  Google Scholar 

  47. Kalinski, P., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561–567 (1999).

    Article  CAS  Google Scholar 

  48. Egeter, O., Mocikat, R., Ghoreschi, K., Dieckmann, A. & Rocken, M. Eradication of disseminated lymphomas with CpG-DNA activated T helper type 1 cells from nontransgenic mice. Cancer Res. 60, 1515–1520 (2000).

    CAS  PubMed  Google Scholar 

  49. Kacha, A. K., Fallarino, F., Markiewicz, M. A. & Gajewski, T. F. Cutting edge: spontaneous rejection of poorly immunogenic P1.HTR tumors by Stat6-deficient mice. J. Immunol. 165, 6024–6028 (2000).

    Article  CAS  Google Scholar 

  50. Ramanathan, S. et al. Recombinant IL-4 aggravates experimental autoimmune uveoretinitis in rats. J. Immunol. 157, 2209–2215 (1996).

    CAS  PubMed  Google Scholar 

  51. Fort, M. et al. IL-4 exacerbates disease in a Th1 cell transfer model of colitis. J. Immunol. 166, 2793–2800 (2001).

    Article  CAS  Google Scholar 

  52. Biedermann, T. et al. Reversal of established delayed type hypersensitivity reactions following therapy with IL-4 or antigen-specific Th2 cells. Eur. J. Immunol. 31, 1582–1591 (2001).

    Article  CAS  Google Scholar 

  53. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  54. Lutz, M. B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Meth. 223, 77–92 (1999).

    Article  CAS  Google Scholar 

  55. Favre, N. & Erb, P. Use of the CTL44 cell line, a derivative of CTL/L cells, to identify and quantify mouse interleukin-4 by bioassay. J. Immunol. Meth. 164, 213–220 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. E. Paul, E. M. Shevach (Laboratory of Immunology, NIAID, NIH), G. Riethmüller and T. Brocker (Department of Immunology, Munich) for helpful discussions and critically reading the manuscript and B. von Restorff for technical assistance. Supported by the Deutsche Forschungsgemeinschaft RO 764/8-1 and 676/1, SFB 217 and SFB 456, the Wilhelm Sander-Stiftung (97.041.2) and the Swiss National Science Fdt.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacques A. Louis or Martin Röcken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biedermann, T., Zimmermann, S., Himmelrich, H. et al. IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat Immunol 2, 1054–1060 (2001). https://doi.org/10.1038/ni725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing