Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mistaken notions about natural killer cells

Abstract

As natural killer (NK) cells were first described more than 30 years ago—a lifetime in recent immunological history—this is a good time to reflect on their transition from outcasts of mainstream immunology to prominent players in innate immunity. Whereas much of our existing knowledge about NK cells is taken as longstanding fact, it may be surprising to immunologists of a younger vintage, particularly those working on NK cells today, that some of this knowledge was, at least initially, unexpected. In this Perspective, I take an unconventional approach to discussing our progress in understanding NK cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mitchell, G.J. Report to the Commissioner of Baseball of an Independent Investigation into the Illegal Use of Steroids and Other Performance Enhancing Substances by Players in Major League Baseball (Commissioner of Baseball, 2007).

    Google Scholar 

  2. Brooks, C.G. Reversible induction of natural killer cell activity in cloned murine cytotoxic T lymphocytes. Nature 305, 155–158 (1983).

    Article  CAS  Google Scholar 

  3. Lanier, L.L., Phillips, J.H., Hackett, J. Jr., Tutt, M. & Kumar, V. Natural killer cells: definition of a cell type rather than a function. J. Immunol. 137, 2735–2739 (1986).

    CAS  PubMed  Google Scholar 

  4. Anegon, I., Cuturi, M.C., Trinchieri, G. & Perussia, B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J. Exp. Med. 167, 452–472 (1988).

    Article  CAS  Google Scholar 

  5. Shellam, G.R., Allan, J.E., Papadimitriou, J.M. & Bancroft, G.J. Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proc. Natl. Acad. Sci. USA 78, 5104–5108 (1981).

    Article  CAS  Google Scholar 

  6. Bukowski, J.F., Woda, B.A., Habu, S., Okumura, K. & Welsh, R.M. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J. Immunol. 131, 1531–1538 (1983).

    CAS  PubMed  Google Scholar 

  7. Degli-Esposti, M.A. & Smyth, M.J. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat. Rev. Immunol. 5, 112–124 (2005).

    Article  CAS  Google Scholar 

  8. French, A.R. & Yokoyama, W.M. Natural killer cells and viral infections. Curr. Opin. Immunol. 15, 45–51 (2003).

    Article  CAS  Google Scholar 

  9. Henkart, P.A. Mechanism of lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 3, 31–54 (1985).

    Article  CAS  Google Scholar 

  10. Kärre, K., Ljunggren, H.G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  Google Scholar 

  11. Bix, M. et al. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 349, 329–331 (1991).

    Article  CAS  Google Scholar 

  12. Lanier, L.L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  Google Scholar 

  13. Karlhofer, F.M., Ribaudo, R.K. & Yokoyama, W.M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358, 66–70 (1992).

    Article  CAS  Google Scholar 

  14. Smith, H.R.C., Karlhofer, F.M. & Yokoyama, W.M. Ly-49 multigene family expressed by IL-2-activated NK cells. J. Immunol. 153, 1068–1079 (1994).

    CAS  PubMed  Google Scholar 

  15. Mason, L.H. et al. Cloning and functional characteristics of murine large granular lymphocyte-1: a member of the Ly-49 gene family (Ly-49G2). J. Exp. Med. 182, 293–303 (1995).

    Article  CAS  Google Scholar 

  16. Stoneman, E.R. et al. Cloning and characterization of 5E6 (Ly-49C), a receptor molecule expressed on a subset of murine natural killer cells. J. Exp. Med. 182, 305–313 (1995).

    Article  CAS  Google Scholar 

  17. Colonna, M. & Samaridis, J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 268, 405–408 (1995).

    Article  CAS  Google Scholar 

  18. Wagtmann, N. et al. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2, 439–449 (1995).

    Article  CAS  Google Scholar 

  19. Moretta, A. et al. Receptors for HLA class-I molecules in human natural killer cells. Annu. Rev. Immunol. 14, 619–648 (1996).

    Article  CAS  Google Scholar 

  20. Lanier, L.L. & Phillips, J.H. Inhibitory MHC class I receptors on NK cells and T cells. Immunol. Today 17, 86–91 (1996).

    Article  CAS  Google Scholar 

  21. Westgaard, I.H., Berg, S.F., Orstavik, S., Fossum, S. & Dissen, E. Identification of a human member of the Ly-49 multigene family. Eur. J. Immunol. 28, 1839–1846 (1998).

    Article  CAS  Google Scholar 

  22. Vance, R.E., Tanamachi, D.M., Hanke, T. & Raulet, D.H. Cloning of a mouse homolog of CD94 extends the family of C-type lectins on murine natural killer cells. Eur. J. Immunol. 27, 3236–3241 (1997).

    Article  CAS  Google Scholar 

  23. Ho, E.L. et al. Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. Proc. Natl. Acad. Sci. USA 95, 6320–6325 (1998).

    Article  CAS  Google Scholar 

  24. Rojo, S., Burshtyn, D.N., Long, E.O. & Wagtmann, N. Type I transmembrane receptor with inhibitory function in mouse mast cells and NK cells. J. Immunol. 158, 9–12 (1997).

    CAS  PubMed  Google Scholar 

  25. Wang, L.L., Mehta, I.K., Leblanc, P.A. & Yokoyama, W.M. Cutting edge: mouse natural killer cells express GP49b1, a structural homologue of human killer inhibitory receptors. J. Immunol. 158, 13–17 (1997).

    CAS  PubMed  Google Scholar 

  26. Long, E.O. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

    Article  CAS  Google Scholar 

  27. Trowsdale, J. Genetic and functional relationships between MHC and NK receptor genes. Immunity 15, 363–374 (2001).

    Article  CAS  Google Scholar 

  28. Gumperz, J.E. & Parham, P. The enigma of the natural killer cell. Nature 378, 245–248 (1995).

    Article  CAS  Google Scholar 

  29. Barten, R., Torkar, M., Haude, A., Trowsdale, J. & Wilson, M.J. Divergent and convergent evolution of NK-cell receptors. Trends Immunol. 22, 52–57 (2001).

    Article  CAS  Google Scholar 

  30. Perez-Villar, J.J. et al. Functional ambivalence of the Kp43 (CD94) NK cell-associated surface antigen. J. Immunol. 154, 5779–5788 (1995).

    CAS  PubMed  Google Scholar 

  31. Chang, C. et al. Molecular characterization of human CD94: a type II membrane glycoprotein related to the C-type lectin superfamily. Eur. J. Immunol. 25, 2433–2437 (1995).

    Article  CAS  Google Scholar 

  32. Lazetic, S., Chang, C., Houchins, J.P., Lanier, L.L. & Phillips, J.H. Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J. Immunol. 157, 4741–4745 (1996).

    CAS  PubMed  Google Scholar 

  33. Carretero, M. et al. The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules. Eur. J. Immunol. 27, 563–567 (1997).

    Article  CAS  Google Scholar 

  34. Lanier, L.L., Corliss, B., Wu, J. & Phillips, J.H. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8, 693–701 (1998).

    Article  CAS  Google Scholar 

  35. Braud, V.M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  CAS  Google Scholar 

  36. Borrego, F., Ulbrecht, M., Weiss, E.H., Coligan, J.E. & Brooks, A.G. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J. Exp. Med. 187, 813–818 (1998).

    Article  CAS  Google Scholar 

  37. Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl. Acad. Sci. USA 95, 5199–5204 (1998).

    Article  CAS  Google Scholar 

  38. Yokoyama, W.M. HLA class I specificity for natural killer cell receptor CD94/NKG2A: two for one in more ways than one. Proc. Natl. Acad. Sci. USA 95, 4791–4794 (1998).

    Article  CAS  Google Scholar 

  39. Yokoyama, W.M., Jacobs, L.B., Kanagawa, O., Shevach, E.M. & Cohen, D.I. A murine T lymphocyte antigen belongs to a supergene family of type II integral membrane proteins. J. Immunol. 143, 1379–1386 (1989).

    CAS  PubMed  Google Scholar 

  40. Daniels, B.F., Nakamura, M.C., Rosen, S.D., Yokoyama, W.M. & Seaman, W.E. Ly-49A, a receptor for H-2Dd, has a functional carbohydrate recognition domain. Immunity 1, 785–792 (1994).

    Article  CAS  Google Scholar 

  41. Matsumoto, N., Ribaudo, R.K., Abastado, J.-P., Margulies, D.H. & Yokoyama, W.M. The lectin-like NK cell receptor Ly-49A recognizes a carbohydrate-independent epitope on its MHC class I ligand. Immunity 8, 245–254 (1998).

    Article  CAS  Google Scholar 

  42. Tormo, J., Natarajan, K., Margulies, D.H. & Mariuzza, R.A. Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402, 623–631 (1999).

    Article  CAS  Google Scholar 

  43. Matsumoto, N., Mitsuki, M., Tajima, K., Yokoyama, W.M. & Yamamoto, K. The functional binding site for the C-type lectin-like natural killer cell receptor Ly49A spans three domains of its major histocompatibility complex class I ligand. J. Exp. Med. 193, 147–158 (2001).

    Article  CAS  Google Scholar 

  44. Wang, J. et al. Binding of the natural killer cell inhibitory receptor Ly49A to its major histocompatibility complex class I ligand. Crucial contacts include both H-2Dd and β2-microglobulin. J. Biol. Chem. 277, 1433–1442 (2002).

    Article  CAS  Google Scholar 

  45. Weis, W.I. & Drickamer, K. Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem. 65, 441–473 (1996).

    Article  CAS  Google Scholar 

  46. Doyle, A.C. A scandal in Bohemia. In The Adventures of Sherlock Holmes (George Newnes, London, 1892).

    Google Scholar 

  47. O'Leary, J.G., Goodarzi, M., Drayton, D.L. & von Andrian, U.H. T cell– and B cell–independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).

    Article  CAS  Google Scholar 

  48. Doucey, M.-A. et al. Cis association of Ly49A with MHC class I restricts natural killer cell inhibition. Nat. Immunol. 5, 328–336 (2004).

    Article  CAS  Google Scholar 

  49. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    Article  CAS  Google Scholar 

  50. Vosshenrich, C.A. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol. 7, 1217–1224 (2006).

    Article  CAS  Google Scholar 

  51. Cooper, M.A., Fehniger, T.A. & Caligiuri, M.A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

    Article  CAS  Google Scholar 

  52. Yu, Y.Y.L., Kumar, V. & Bennett, M. Murine natural killer cells and marrow graft rejection. Annu. Rev. Immunol. 10, 189–213 (1992).

    Article  CAS  Google Scholar 

  53. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    Article  CAS  Google Scholar 

  54. Raulet, D.H. & Vance, R.E. Self-tolerance of natural killer cells. Nat. Rev. Immunol. 6, 520–531 (2006).

    Article  CAS  Google Scholar 

  55. Yokoyama, W.M. & Kim, S. How do natural killer cells find self to achieve tolerance? Immunity 24, 249–257 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank past and present members of my laboratory and the many investigators in the NK cell field whose contributions have enriched and enlightened the field. Unfortunately, many could not be mentioned because of space constraints. Thanks also to M. Cooper, A. French, H. Jonsson and J. Sunwoo for critical review of this manuscript and to L. Carayannopoulos, J. Heusel, K. Iizuka, S. Kim, B. Plougastel and E. Unanue for suggestions. Supported by the Howard Hughes Medical Institute and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne M Yokoyama.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, W. Mistaken notions about natural killer cells. Nat Immunol 9, 481–485 (2008). https://doi.org/10.1038/ni1583

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1583

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing