Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses

Abstract

Mast cells have key functions as effectors of immunoglobulin E–mediated allergic inflammatory diseases. Allergen stimulation induces Ca2+ influx and elicits the secretion of inflammatory mediators from mast cells. Here we show that the Ca2+-binding endoplasmic reticulum protein STIM1 is critical to mast cell function. STIM1-deficient fetal liver–derived mast cells had impaired Ca2+ influx mediated by the high-affinity immunoglobulin E receptor FcεRI and activation of the transcription factors NF-κB and NFAT. Mast cells lacking STIM1 also had much less degranulation and cytokine production after FcεRI stimulation. In addition, alterations in STIM1 expression affected the sensitivity of immunoglobulin E–mediated immediate-phase anaphylactic responses in vivo. Thus, STIM1 is key in promoting the Ca2+ influx that is essential for FcεRI-mediated mast cell activation and anaphylaxis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of Stim1−/− mast cells.
Figure 2: Suppression of SOC influx in Stim1−/− FLMCs.
Figure 3: STIM1 is required for FcεRI-induced degranulation and cytokine production.
Figure 4: FcεRI-proximal signaling and activation of MAP kinases in Stim1+/+ and Stim1−/− FLMCs.
Figure 5: Activation of NF-κB and NFAT is inhibited in Stim1−/− FLMCs.
Figure 6: In vivo anaphylaxis is lower in Stim1+/− mice.

Similar content being viewed by others

References

  1. Wedemeyer, J., Tsai, M. & Galli, S.J. Roles of mast cells and basophils in innate and acquired immunity. Curr. Opin. Immunol. 12, 624–631 (2000).

    Article  CAS  Google Scholar 

  2. Bischoff, S.C. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat. Rev. Immunol. 7, 93–104 (2007).

    Article  CAS  Google Scholar 

  3. Kraft, S. & Kinet, J.P. New developments in FcεRI regulation, function and inhibition. Nat. Rev. Immunol. 7, 365–378 (2007).

    Article  CAS  Google Scholar 

  4. Parekh, A.B. & Penner, R. Store depletion and calcium influx. Physiol. Rev. 77, 901–930 (1997).

    Article  CAS  Google Scholar 

  5. Parekh, A.B. & Putney, J.W., Jr. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    Article  CAS  Google Scholar 

  6. Clapham, D.E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  Google Scholar 

  7. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).

    Article  CAS  Google Scholar 

  8. Parekh, A.B., Fleig, A. & Penner, R. The store-operated calcium current ICRAC: nonlinear activation by InsP3 and dissociation from calcium release. Cell 89, 973–980 (1997).

    Article  CAS  Google Scholar 

  9. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  Google Scholar 

  10. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    Article  CAS  Google Scholar 

  11. Zhang, S.L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl. Acad. Sci. USA 103, 9357–9362 (2006).

    Article  CAS  Google Scholar 

  12. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    Article  CAS  Google Scholar 

  13. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  Google Scholar 

  14. Baba, Y. et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 103, 16704–16709 (2006).

    Article  CAS  Google Scholar 

  15. Luik, R.M. & Lewis, R.S. New insights into the molecular mechanisms of store-operated Ca2+ signaling in T cells. Trends Mol. Med. 13, 103–107 (2007).

    Article  CAS  Google Scholar 

  16. Mercer, J.C. et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281, 24979–24990 (2006).

    Article  CAS  Google Scholar 

  17. Xu, P. et al. Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem. Biophys. Res. Commun. 350, 969–976 (2006).

    Article  CAS  Google Scholar 

  18. Wu, M.M., Buchanan, J., Luik, R.M. & Lewis, R.S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  Google Scholar 

  19. Stathopulos, P.B., Li, G.Y., Plevin, M.J., Ames, J.B. & Ikura, M. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J. Biol. Chem. 281, 35855–35862 (2006).

    Article  CAS  Google Scholar 

  20. Ozawa, K. et al. Ca2+-dependent and Ca2+-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells. Reconstitution of secretory responses with Ca2+ and purified isozymes in washed permeabilized cells. J. Biol. Chem. 268, 1749–1756 (1993).

    CAS  PubMed  Google Scholar 

  21. Nishida, K. et al. FcεRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J. Cell Biol. 170, 115–126 (2005).

    Article  CAS  Google Scholar 

  22. Odom, S. et al. Negative regulation of immunoglobulin E-dependent allergic responses by Lyn kinase. J. Exp. Med. 199, 1491–1502 (2004).

    Article  CAS  Google Scholar 

  23. Parravicini, V. et al. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat. Immunol. 3, 741–748 (2002).

    Article  CAS  Google Scholar 

  24. Nishizumi, H. & Yamamoto, T. Impaired tyrosine phosphorylation and Ca2+ mobilization, but not degranulation, in lyn-deficient bone marrow-derived mast cells. J. Immunol. 158, 2350–2355 (1997).

    CAS  PubMed  Google Scholar 

  25. Hernandez-Hansen, V. et al. Dysregulated FcεRI signaling and altered Fyn and SHIP activities in Lyn-deficient mast cells. J. Immunol. 173, 100–112 (2004).

    Article  CAS  Google Scholar 

  26. Putney, J.W., Jr. Store-operated calcium channels: how do we measure them, and why do we care? Sci. STKE 2004, pe37 (2004).

    PubMed  Google Scholar 

  27. Hofer, A.M., Fasolato, C. & Pozzan, T. Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of ICRAC and intraluminal. J. Cell Biol. 140, 325–334 (1998).

    Article  CAS  Google Scholar 

  28. Siraganian, R.P. Mast cell signal transduction from the high-affinity IgE receptor. Curr. Opin. Immunol. 15, 639–646 (2003).

    Article  CAS  Google Scholar 

  29. Klemm, S. et al. The Bcl10-Malt1 complex segregates FcεRI-mediated nuclear factor κB activation and cytokine production from mast cell degranulation. J. Exp. Med. 203, 337–347 (2006).

    Article  Google Scholar 

  30. Chen, Y. et al. B cell lymphoma 10 is essential for FcεR-mediated degranulation and IL-6 production in mast cells. J. Immunol. 178, 49–57 (2007).

    Article  CAS  Google Scholar 

  31. Monticelli, S., Solymar, D.C. & Rao, A. Role of NFAT proteins in IL13 gene transcription in mast cells. J. Biol. Chem. 279, 36210–36218 (2004).

    Article  CAS  Google Scholar 

  32. Klein, M. et al. Specific and redundant roles for NFAT transcription factors in the expression of mast cell-derived cytokines. J. Immunol. 177, 6667–6674 (2006).

    Article  CAS  Google Scholar 

  33. Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C. & Healy, J.I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  Google Scholar 

  34. Healy, J.I. et al. Different nuclear signals are activated by the B cell receptor during positive versus negative signaling. Immunity 6, 419–428 (1997).

    Article  CAS  Google Scholar 

  35. Dziadek, M.A. & Johnstone, L.S. Biochemical properties and cellular localisation of STIM proteins. Cell Calcium 42, 123–132 (2007).

    Article  CAS  Google Scholar 

  36. Olivera, A. et al. The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 26, 287–297 (2007).

    Article  CAS  Google Scholar 

  37. Mathes, C., Fleig, A. & Penner, R. Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine. J. Biol. Chem. 273, 25020–25030 (1998).

    Article  CAS  Google Scholar 

  38. Blank, U. & Rivera, J. The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol. 25, 266–273 (2004).

    Article  CAS  Google Scholar 

  39. Bonifacino, J.S. & Glick, B.S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  Google Scholar 

  40. Manetz, T.S. et al. Vav1 regulates phospholipase cgamma activation and calcium responses in mast cells. Mol. Cell. Biol. 21, 3763–3774 (2001).

    Article  CAS  Google Scholar 

  41. Saitoh, S. et al. The four distal tyrosines are required for LAT-dependent signaling in FcεRI-mediated mast cell activation. J. Exp. Med. 198, 831–843 (2003).

    Article  CAS  Google Scholar 

  42. Pivniouk, V.I. et al. SLP-76 deficiency impairs signaling via the high-affinity IgE receptor in mast cells. J. Clin. Invest. 103, 1737–1743 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hashimoto, A. et al. Involvement of guanosine triphosphatases and phospholipase C-γ2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J. Exp. Med. 188, 1287–1295 (1998).

    Article  CAS  Google Scholar 

  44. Hirasawa, N., Santini, F. & Beaven, M.A. Activation of the mitogen-activated protein kinase/cytosolic phospholipase A2 pathway in a rat mast cell line. Indications of different pathways for release of arachidonic acid and secretory granules. J. Immunol. 154, 5391–5402 (1995).

    CAS  PubMed  Google Scholar 

  45. Jiang, A., Craxton, A., Kurosaki, T. & Clark, E.A. Different protein tyrosine kinases are required for B cell antigen receptor-mediated activation of extracellular signal-regulated kinase, c-Jun NH2-terminal kinase 1, and p38 mitogen-activated protein kinase. J. Exp. Med. 188, 1297–1306 (1998).

    Article  CAS  Google Scholar 

  46. Schulze-Luehrmann, J. & Ghosh, S. Antigen-receptor signaling to nuclear factor κB. Immunity 25, 701–715 (2006).

    Article  CAS  Google Scholar 

  47. Shinohara, H. et al. PKCβ regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. J. Exp. Med. 202, 1423–1431 (2005).

    Article  CAS  Google Scholar 

  48. Nechushtan, H., Leitges, M., Cohen, C., Kay, G. & Razin, E. Inhibition of degranulation and interleukin-6 production in mast cells derived from mice deficient in protein kinase Cβ. Blood 95, 1752–1757 (2000).

    CAS  PubMed  Google Scholar 

  49. Rivera, J. Adaptors discriminate mast-cell cytokine production from eicosanoid production and degranulation. Trends Immunol. 27, 251–253 (2006).

    Article  CAS  Google Scholar 

  50. Timmerman, L.A., Clipstone, N.A., Ho, S.N., Northrop, J.P. & Crabtree, G.R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383, 837–840 (1996).

    Article  CAS  Google Scholar 

  51. Shibasaki, F., Price, E.R., Milan, D. & McKeon, F. Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature 382, 370–373 (1996).

    Article  CAS  Google Scholar 

  52. Oritani, K. & Kincade, P.W. Identification of stromal cell products that interact with pre-B cells. J. Cell Biol. 134, 771–782 (1996).

    Article  CAS  Google Scholar 

  53. Kabu, K. et al. Zinc is required for FcεRI-mediated mast cell activation. J. Immunol. 177, 1296–1305 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Ito for technical assistance; P.W. Kincade for critical review of the manuscript; and S. Yamasaki and H. Shinohara for discussions. The pMX-puro retroviral vector was from T. Kitamura (University of Tokyo). Supported the Ministry of Education, Culture, Sports, Science and Technology of Japan (Y.B. and T.K.).

Author information

Authors and Affiliations

Authors

Contributions

Y.B. designed and coordinated the study, did experiments, analyzed data and wrote the paper; K.N., Y.F. and M.H. cooperated in experiments; T.K. wrote the paper; and T.H. contributed to manuscript writing.

Corresponding author

Correspondence to Tomohiro Kurosaki.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2, Methods and References (PDF 682 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, Y., Nishida, K., Fujii, Y. et al. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 9, 81–88 (2008). https://doi.org/10.1038/ni1546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing