Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Host-pathogen interactions in drosophila: new tricks from an old friend

Abstract

Insects rely solely on innate immune responses to combat a wide array of pathogens. With its powerful genetics, drosophila has proven especially powerful for the study of humoral innate immunity, characterized by the rapid induction of antimicrobial peptides. The two signaling pathways involved, Toll and Imd, have been studied intensely, but other aspects of the drosophila immune response are less well understood. A flurry of reports has focused on the mechanisms of phagocytosis, antiviral immunity and viral pathogenesis in drosophila. These studies have taken advantage of genome-wide RNA-mediated interference screening in drosophila cells, as well as more traditional genetic tools available in the fly. This review discusses advances in these exciting new areas of drosophila immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The drosophila Toll and Imd pathways.
Figure 2: Dscam encodes a diverse set of immune receptors.
Figure 3: Phagocytosis in drosophila.
Figure 4: Virus-host interactions in drosophila.

Similar content being viewed by others

References

  1. Royet, J., Reichhart, J.M. & Hoffmann, J.A. Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17, 11–17 (2005).

    Article  CAS  Google Scholar 

  2. Kaneko, T. & Silverman, N. Bacterial recognition and signalling by the Drosophila IMD pathway. Cell. Microbiol. 7, 461–469 (2005).

    Article  CAS  Google Scholar 

  3. Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat. Immunol. 7, 715–723 (2006).

    Article  CAS  Google Scholar 

  4. Stuart, L.M. & Ezekowitz, R.A. Phagocytosis: elegant complexity. Immunity 22, 539–550 (2005).

    Article  CAS  Google Scholar 

  5. Pearson, A.M. et al. Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila. Microbes Infect. 5, 815–824 (2003).

    Article  CAS  Google Scholar 

  6. Philips, J.A., Rubin, E.J. & Perrimon, N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309, 1251–1253 (2005).

    Article  CAS  Google Scholar 

  7. Agaisse, H. et al. Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science 309, 1248–1251 (2005).

    Article  CAS  Google Scholar 

  8. Stroschein-Stevenson, S.L., Foley, E., O'Farrell, P.H. & Johnson, A.D. Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol. 4, e4 (2006).

    Article  Google Scholar 

  9. Franc, N.C., Heitzler, P., Ezekowitz, R.A. & White, K. Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284, 1991–1994 (1999).

    Article  CAS  Google Scholar 

  10. Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523–527 (2005).

    Article  CAS  Google Scholar 

  11. Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90, 1513–1522 (1992).

    Article  CAS  Google Scholar 

  12. Ramet, M. et al. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 15, 1027–1038 (2001).

    Article  CAS  Google Scholar 

  13. Kocks, C. et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335–346 (2005).

    Article  CAS  Google Scholar 

  14. Ulvila, J. et al. Double stranded RNA is internalized by scavenger receptor mediated endocytosis in Drosophila S2 cells. J. Biol. Chem. 281, 14370–14375 (2006).

    Article  CAS  Google Scholar 

  15. Schmucker, D. & Flanagan, J.G. Generation of recognition diversity in the nervous system. Neuron 44, 219–222 (2004).

    Article  CAS  Google Scholar 

  16. Watson, F.L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309, 1874–1878 (2005).

    Article  CAS  Google Scholar 

  17. Dong, Y., Taylor, H.E. & Dimopoulos, G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol. 4, e229 (2006).

    Article  Google Scholar 

  18. Levashina, E.A. et al. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104, 709–718 (2001).

    Article  CAS  Google Scholar 

  19. Blandin, S. et al. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116, 661–670 (2004).

    Article  CAS  Google Scholar 

  20. Garver, L.S., Wu, J. & Wu, L.P. The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl. Acad. Sci. USA 103, 660–665 (2006).

    Article  CAS  Google Scholar 

  21. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131–137 (2006).

    Article  CAS  Google Scholar 

  22. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  Google Scholar 

  23. Hiscott, J., Lin, R., Nakhaei, P. & Paz, S. MasterCARD: a priceless link to innate immunity. Trends Mol. Med. 12, 53–56 (2006).

    Article  CAS  Google Scholar 

  24. Clemens, M.J. Translational control in virus-infected cells: models for cellular stress responses. Semin. Cell Dev. Biol. 16, 13–20 (2005).

    Article  CAS  Google Scholar 

  25. Li, H.W. & Ding, S.W. Antiviral silencing in animals. FEBS Lett. 579, 5965–5973 (2005).

    Article  CAS  Google Scholar 

  26. Grumbling, G. & Strelets, V. FlyBase: anatomical data, images and queries. Nucleic Acids Res. 34, D484–D488 (2006).

    Article  CAS  Google Scholar 

  27. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  Google Scholar 

  28. Haasnoot, J. & Berkhout, B. RNA interference: its use as antiviral therapy. Handb. Exp. Pharmacol., 173, 117–150 (2006).

    Article  CAS  Google Scholar 

  29. Miyano-Kurosaki, N. & Takaku, H. Gene silencing of virus replication by RNA interference. Handb. Exp. Pharmacol. 173, 151–171 (2006).

    Article  CAS  Google Scholar 

  30. Xie, Q. & Guo, H.S. Systemic antiviral silencing in plants. Virus Res. 118, 1–6 (2005).

    Article  Google Scholar 

  31. Li, W.X. et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl. Acad. Sci. USA 101, 1350–1355 (2004).

    Article  CAS  Google Scholar 

  32. Li, H., Li, W.X. & Ding, S.W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    Article  CAS  Google Scholar 

  33. Galiana-Arnoux, D., Dostert, C., Schneemann, A., Hoffmann, J.A. & Imler, J.L. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat. Immunol. 7, 590–597 (2006).

    Article  CAS  Google Scholar 

  34. Wang, X.H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    Article  CAS  Google Scholar 

  35. Zambon, R.A., Vakharia, V.N. & Wu, L.P. RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell. Microbiol. 8, 880–889 (2006).

    Article  CAS  Google Scholar 

  36. Pal-Bhadra, M., Bhadra, U. & Birchler, J.A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell 9, 315–327 (2002).

    Article  CAS  Google Scholar 

  37. Sarot, E., Payen-Groschene, G., Bucheton, A. & Pelisson, A. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 166, 1313–1321 (2004).

    Article  CAS  Google Scholar 

  38. Kalmykova, A.I., Klenov, M.S. & Gvozdev, V.A. Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res. 33, 2052–2059 (2005).

    Article  CAS  Google Scholar 

  39. Berkhout, B. & Haasnoot, J. The interplay between virus infection and the cellular RNA interference machinery. FEBS Lett. 580, 2896–2907 (2006).

    Article  CAS  Google Scholar 

  40. Reavy, B., Dawson, S., Canto, T. & MacFarlane, S.A. Heterologous expression of plant virus genes that suppress post-transcriptional gene silencing results in suppression of RNA interference in Drosophila cells. BMC Biotechnol. 4, 18 (2004).

    Article  Google Scholar 

  41. Obbard, D.J., Jiggins, F.M., Halligan, D.L. & Little, T.J. Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr. Biol. 16, 580–585 (2006).

    Article  CAS  Google Scholar 

  42. Brun, G. & Plus, N. in Genetics and Biology of Drosophila (eds. Ashburner, M. & Wright, T.R.F.) 625–702 (Academic, New York, 1980).

    Google Scholar 

  43. Wayne, M.L., Contamine, D. & Kreitman, M. Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Mol. Biol. Evol. 13, 191–199 (1996).

    Article  CAS  Google Scholar 

  44. Zambon, R.A., Nandakumar, M., Vakharia, V.N. & Wu, L.P. The Toll pathway is important for an antiviral response in Drosophila. Proc. Natl. Acad. Sci. USA 102, 7257–7262 (2005).

    Article  CAS  Google Scholar 

  45. Thoetkiattikul, H., Beck, M.H. & Strand, M.R. Inhibitor κB-like proteins from a polydnavirus inhibit NF-κB activation and suppress the insect immune response. Proc. Natl. Acad. Sci. USA 102, 11426–11431 (2005).

    Article  CAS  Google Scholar 

  46. Sabatier, L. et al. Pherokine-2 and -3. Eur. J. Biochem. 270, 3398–3407 (2003).

    Article  CAS  Google Scholar 

  47. Roxstrom-Lindquist, K., Terenius, O. & Faye, I. Parasite-specific immune response in adult Drosophila melanogaster: a genomic study. EMBO Rep. 5, 207–212 (2004).

    Article  Google Scholar 

  48. Dostert, C. et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat. Immunol. 6, 946–953 (2005).

    Article  CAS  Google Scholar 

  49. Garcia-Sastre, A. & Biron, C.A. Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312, 879–882 (2006).

    Article  CAS  Google Scholar 

  50. Brun, S. et al. The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells 11, 397–407 (2006).

    Article  CAS  Google Scholar 

  51. Ekengren, S. & Hultmark, D. A family of Turandot-related genes in the humoral stress response of Drosophila. Biochem. Biophys. Res. Commun. 284, 998–1003 (2001).

    Article  CAS  Google Scholar 

  52. Cherry, S. & Perrimon, N. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat. Immunol. 5, 81–87 (2004).

    Article  CAS  Google Scholar 

  53. Cherry, S. et al. Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Dev. 19, 445–452 (2005).

    Article  CAS  Google Scholar 

  54. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273, 1856–1862 (1996).

    Article  CAS  Google Scholar 

  55. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  Google Scholar 

  56. Moore, J.P. & Doms, R.W. The entry of entry inhibitors: a fusion of science and medicine. Proc. Natl. Acad. Sci. USA 100, 10598–10602 (2003).

    Article  CAS  Google Scholar 

  57. Gwack, Y. et al. A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646–650 (2006).

    Article  CAS  Google Scholar 

  58. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Doms, M. Tudor, E. Lien and members of the Silverman lab for comments and insights; and B. Graveley for the Dscam figure (Fig. 3). Supported by the National Institutes of Health (AI060025 to N.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal Silverman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherry, S., Silverman, N. Host-pathogen interactions in drosophila: new tricks from an old friend. Nat Immunol 7, 911–917 (2006). https://doi.org/10.1038/ni1388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing