Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium

An Erratum to this article was published on 01 June 2006

This article has been updated

Abstract

Prevailing knowledge dictates that naive αβ T cells require activation in lymphoid tissues before differentiating into effector or memory T cells capable of trafficking to nonlymphoid tissues. Here we demonstrate that CD8+ recent thymic emigrants (RTEs) migrated directly into the small intestine. CCR9, CCL25 and α4β7 integrin were required for gut entry of CD8+ RTEs. After T cell receptor stimulation, intestinal CD8+ RTEs proliferated and acquired a surface phenotype resembling that of intraepithelial lymphocytes. CD8+ RTEs efficiently populated the gut of lymphotoxin-α-deficient mice, which lack lymphoid organs. These studies challenge the present understanding of naive αβ T cell trafficking and suggest that RTEs may be involved in maintaining a diverse immune repertoire at mucosal surfaces.

*Note: In the version of this article initially published, the vertical axis label ‘FITC’ is missing from the right column in Figure 1a. The correct figure is presented here. The error has been corrected in the PDF version of the article.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homing of CD8+ RTEs to the gut.
Figure 2: Localization of CD8+ SP thymocytes in the gut.
Figure 3: CCR9 and CCL25 in gut homing of CD8+ SP thymocytes.
Figure 4: The α4 integrin in gut homing of CD8+ SP thymocytes.
Figure 5: Intraintestinal proliferation and differentiation of CD8+ SP thymocytes.
Figure 6: 'Preferential' homing of CD8+ RTEs to the gut.

Similar content being viewed by others

Change history

  • 02 May 2006

    In the version of this article initially published, the vertical axis label ‘FITC’ is missing from the right column in Figure 1a. The correct figure is presented here. The error has been corrected in the PDF version of the article.

References

  1. Picker, L.J. & Butcher, E.C. Physiological and molecular mechanisms of lymphocyte homing. Annu. Rev. Immunol. 10, 561–591 (1992).

    Article  CAS  Google Scholar 

  2. Weninger, W., Manjunath, N. & von Andrian, U.H. Migration and differentiation of CD8+ T cells. Immunol. Rev. 186, 221–233 (2002).

    Article  CAS  Google Scholar 

  3. Cheroutre, H. IELs: enforcing law and order in the court of the intestinal epithelium. Immunol. Rev. 206, 114–131 (2005).

    Article  Google Scholar 

  4. Hayday, A., Theodoridis, E., Ramsburg, E. & Shires, J. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat. Immunol. 2, 997–1003 (2001).

    Article  CAS  Google Scholar 

  5. Ferguson, A. Intraepithelial lymphocytes of the small intestine. Gut 18, 921–937 (1977).

    Article  CAS  Google Scholar 

  6. Holmes, G.K., Asquith, P., Stokes, P.L. & Cooke, W.T. Cellular infiltrate of jejunal biopsies in adult coeliac disease in relation to gluten withdrawal. Gut 15, 278–283 (1974).

    Article  CAS  Google Scholar 

  7. Kim, S.K. et al. Induction and visualization of mucosal memory CD8 T cells following systemic virus infection. The role of β7 integrins in CD8 T cell trafficking during an antiviral immune response. J. Immunol. 163, 4125–4132 (1999).

    CAS  Google Scholar 

  8. Klonowski, K.D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    Article  CAS  Google Scholar 

  9. Cepek, K.L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αE β7 integrin. Nature 372, 190–193 (1994).

    Article  CAS  Google Scholar 

  10. Goodman, T. & Lefrancois, L. Expression of the γδ T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. Nature 333, 855–858 (1988).

    Article  CAS  Google Scholar 

  11. Bonneville, M. et al. Intestinal intraepithelial lymphocytes are a distinct set of γδ T cells. Nature 336, 479–481 (1988).

    Article  CAS  Google Scholar 

  12. Guy-Grand, D. et al. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J. Exp. Med. 173, 471–481 (1991).

    Article  CAS  Google Scholar 

  13. Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  Google Scholar 

  14. Guy-Grand, D. et al. Extrathymic T cell lymphopoiesis: ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice. J. Exp. Med. 197, 333–341 (2003).

    Article  CAS  Google Scholar 

  15. Arstila, T. et al. Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. J. Exp. Med. 191, 823–834 (2000).

    Article  CAS  Google Scholar 

  16. Guy-Grand, D., Griscelli, C. & Vassalli, P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host conditions. J. Exp. Med. 148, 1661–1677 (1978).

    Article  CAS  Google Scholar 

  17. Lambolez, F. et al. The thymus exports long-lived fully committed T cell precursors that can colonize primary lymphoid organs. Nat. Immunol. 7, 76–82 (2006).

    Article  CAS  Google Scholar 

  18. Berzins, S.P., Boyd, R.L. & Miller, J.F. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J. Exp. Med. 187, 1839–1848 (1998).

    Article  CAS  Google Scholar 

  19. Boursalian, T.E., Golob, J., Soper, D.M., Cooper, C.J. & Fink, P.J. Continued maturation of thymic emigrants in the periphery. Nat. Immunol. 5, 418–425 (2004).

    Article  CAS  Google Scholar 

  20. Alferink, J. et al. Control of neonatal tolerance to tissue antigens by peripheral T cell trafficking. Science 282, 1338–1341 (1998).

    Article  CAS  Google Scholar 

  21. Svensson, M. et al. CCL25 mediates the localization of recently activated CD8αβ+ lymphocytes to the small-intestinal mucosa. J. Clin. Invest. 110, 1113–1121 (2002).

    Article  CAS  Google Scholar 

  22. Johansson-Lindbom, B. et al. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J. Exp. Med. 198, 963–969 (2003).

    Article  CAS  Google Scholar 

  23. Wurbel, M.A. et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur. J. Immunol. 30, 262–271 (2000).

    Article  CAS  Google Scholar 

  24. Berzins, S.P., Godfrey, D.I., Miller, J.F. & Boyd, R.L. A central role for thymic emigrants in peripheral T cell homeostasis. Proc. Natl. Acad. Sci. USA 96, 9787–9791 (1999).

    Article  CAS  Google Scholar 

  25. Butcher, E.C., Weissman, I.L. & Scollay, R.G. Direct fluorescent labeling of cells with fluorescein or rhodamine isothiocyanate. I. Technical aspects Direct fluorescent labeling of cells with fluorescein or rhodamine isothiocyanate. II. Potential application to studies of lymphocyte migration and maturation. J. Immunol. Methods 37, 97–108 (1980).

    Article  CAS  Google Scholar 

  26. Scollay, R.G., Butcher, E.C. & Weissman, I.L. Thymus cell migration. Quantitative aspects of cellular traffic from the thymus to the periphery in mice. Eur. J. Immunol. 10, 210–218 (1980).

    Article  CAS  Google Scholar 

  27. Gabor, M.J., Godfrey, D.I. & Scollay, R. Recent thymic emigrants are distinct from most medullary thymocytes. Eur. J. Immunol. 27, 2010–2015 (1997).

    Article  CAS  Google Scholar 

  28. Dyall, R. & Nikolic-Zugic, J. The majority of postselection CD4+ single-positive thymocytes requires the thymus to produce long-lived, functional T cells. J. Exp. Med. 181, 235–245 (1995).

    Article  CAS  Google Scholar 

  29. Ye, P. & Kirschner, D.E. Reevaluation of T cell receptor excision circles as a measure of human recent thymic emigrants. J. Immunol. 168, 4968–4979 (2002).

    Article  CAS  Google Scholar 

  30. Hazenberg, M.D., Verschuren, M.C., Hamann, D., Miedema, F. & van Dongen, J.J. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J. Mol. Med. 79, 631–640 (2001).

    Article  CAS  Google Scholar 

  31. von Andrian, U.H. & Mackay, C.R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  Google Scholar 

  32. Pabst, O. et al. Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur. J. Immunol. 35, 98–107 (2005).

    Article  CAS  Google Scholar 

  33. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  Google Scholar 

  34. Staton, T.L., Johnston, B., Butcher, E.C. & Campbell, D.J. Murine CD8+ recent thymic emigrants are αE integrin-positive and CC chemokine ligand 25 responsive. J. Immunol. 172, 7282–7288 (2004).

    Article  CAS  Google Scholar 

  35. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  36. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  37. Barnard, J.A., Warwick, G.J. & Gold, L.I. Localization of transforming growth factor β isoforms in the normal murine small intestine and colon. Gastroenterology 105, 67–73 (1993).

    Article  CAS  Google Scholar 

  38. Parker, C.M. et al. A family of β7 integrins on human mucosal lymphocytes. Proc. Natl. Acad. Sci. USA 89, 1924–1928 (1992).

    Article  CAS  Google Scholar 

  39. Kilshaw, P.J. & Murant, S.J. A new surface antigen on intraepithelial lymphocytes in the intestine. Eur. J. Immunol. 20, 2201–2207 (1990).

    Article  CAS  Google Scholar 

  40. Mayer, L. & Shlien, R. Evidence for function of Ia molecules on gut epithelial cells in man. J. Exp. Med. 166, 1471–1483 (1987).

    Article  CAS  Google Scholar 

  41. Hershberg, R.M. & Mayer, L.F. Antigen processing and presentation by intestinal epithelial cells - polarity and complexity. Immunol. Today 21, 123–128 (2000).

    Article  CAS  Google Scholar 

  42. Camerini, V. et al. Generation of intestinal mucosal lymphocytes in SCID mice reconstituted with mature, thymus-derived T cells. J. Immunol. 160, 2608–2618 (1998).

    CAS  Google Scholar 

  43. Blumberg, R.S., Yockey, C.E., Gross, G.G., Ebert, E.C. & Balk, S.P. Human intestinal intraepithelial lymphocytes are derived from a limited number of T cell clones that utilize multiple Vβ T cell receptor genes. J. Immunol. 150, 5144–5153 (1993).

    CAS  Google Scholar 

  44. Regnault, A., Cumano, A., Vassalli, P., Guy-Grand, D. & Kourilsky, P. Oligoclonal repertoire of the CD8αα and the CD8αβ TCR-αβ murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J. Exp. Med. 180, 1345–1358 (1994).

    Article  CAS  Google Scholar 

  45. Uehara, S., Grinberg, A., Farber, J.M. & Love, P.E. A role for CCR9 in T lymphocyte development and migration. J. Immunol. 168, 2811–2819 (2002).

    Article  CAS  Google Scholar 

  46. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  47. Lefrancois, L. Carbohydrate differentiation antigens of murine T cells: expression on intestinal lymphocytes and intestinal epithelium. J. Immunol. 138, 3375–3384 (1987).

    CAS  Google Scholar 

  48. Valdez, Y. et al. Major histocompatibility complex class II presentation of cell-associated antigen is mediated by CD8α+ dendritic cells in vivo. J. Exp. Med. 195, 683–694 (2002).

    Article  CAS  Google Scholar 

  49. Butcher, E.C., Scollay, R.G. & Weissman, I.L. Direct fluorescent labeling of cells with fluorescein or rhodamine isothiocyanate. II. Potential application to studies of lymphocyte migration and maturation. J. Immunol. Methods 37, 109–121 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Resurrecion for histology, and L. Rott and C. Crumpton for cell sorting. Supported by the National Institutes of Health (AI47822 and GM37734 to E.C.B.; DK07056 to A.H.; and DK060000 to T.S.), the Department of Veterans Affairs (E.C.B.), the Howard Hughes Medical Institute (M.M.W.) and the Stanford Digestive Disease Center (DK56339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene C Butcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Complete blockade after in vivo administration of antibody. (PDF 322 kb)

Supplementary Figure 2

OT-I+Rag1−/− CD8SP can efficiently home to gut. (PDF 107 kb)

Supplementary Figure 3

CD8 recent thymic emigrants traffic to the small intestine. (PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staton, T., Habtezion, A., Winslow, M. et al. CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nat Immunol 7, 482–488 (2006). https://doi.org/10.1038/ni1319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing