Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The autoimmune suppressor Gadd45α inhibits the T cell alternative p38 activation pathway

Abstract

The p38 MAP kinase (MAPK) is phosphorylated and activated by upstream MAPK kinases. T cells have an alternative pathway in which T cell receptor–activated tyrosine kinase Zap70 phosphorylates p38 on Tyr323. Mice lacking Gadd45α, a small p38-binding molecule, develop a lupus-like autoimmune disease. Here we show that resting T cells but not B cells from Gadd45a−/− mice had spontaneously increased p38 activity in the absence of 'upstream' MAPK kinase activation. The p38 from resting Gadd45a−/− T cells was spontaneously phosphorylated on Tyr323, and its activity was specifically inhibited by recombinant Gadd45α in vitro. Thus, constitutive activation of T cell p38 through the alternative pathway is prevented by Gadd45α, the absence of which results in p38 activation, T cell hyperproliferation and autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In unstimulated lymphocytes from Gadd45a−/− mice, p38 is spontaneously active.
Figure 2: The activity of p38 is spontaneously increased in resting T lineage but not B cells from Gadd45a−/− mice.
Figure 3: Upstream MAPKK activation in wild-type and Gadd45a−/− T cells.
Figure 4: Inhibition of p38 by recombinant Gadd45α.
Figure 5: The p38 from resting Gadd45a−/− T cells but not B cells autophosphorylates and is inhibited by recombinant Gadd45α.
Figure 6: Recombinant Gadd45α inhibits the activity of p38 phosphorylated by Zap70 but not MKK6.
Figure 7: Inhibition of Src family kinases reduces spontaneous p38 Tyr323 phosphorylation and p38 activity in Gadd45a−/− T cells to wild-type amounts.

Similar content being viewed by others

References

  1. Fan, W., Richter, G., Cereseto, A., Beadling, C. & Smith, K.A. Cytokine response gene 6 induces p21 and regulates both cell growth and arrest. Oncogene 18, 6573–6582 (1999).

    Article  CAS  Google Scholar 

  2. Fornace, A.J., Jr. et al. Mammalian genes coordinately regulate by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol. 9, 4196–4203 (1989).

    Article  CAS  Google Scholar 

  3. Vairapandi, M., Balliet, A.G., Fornace, A.J.J., Hoffman, B. & Liebermann, D.A. The differentiation primary response gene MyD118, related to GADD45, encodes for a nuclear protein which interacts with PCNA and p21WAF1/CIP1. Oncogene 12, 2579–2594 (1996).

    CAS  PubMed  Google Scholar 

  4. Lu, B. et al. GADD45γ mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 14, 583–590 (2001).

    Article  CAS  Google Scholar 

  5. Yang, J., Zhu, H., Murphy, T.L., Ouyang, W. & Murphy, K.M. IL-18-stimulated GADD45β required in cytokine-induced, but not TCR-induced, IFN-γ production. Nat. Immunol. 2, 157–164 (2001).

    Article  CAS  Google Scholar 

  6. Lu, B., Ferrandino, A.F. & Flavell, R.A. Gadd45β is important for perpetuating cognate and inflammatory signals in T cells. Nat. Immunol. 5, 38–44 (2004).

    Article  CAS  Google Scholar 

  7. Hoffmeyer, A., Piekorz, R., Moriggl, R. & Ihle, J.N. Gadd45γ is dispensable for normal mouse development and T-cell proliferation. Mol. Cell. Biol. 21, 3137–3143 (2001).

    Article  CAS  Google Scholar 

  8. Hollander, M.C. et al. Genomic instability in Gadd45a-deficient mice. Nat. Genet. 23, 176–184 (1999).

    Article  CAS  Google Scholar 

  9. Hollander, M.C. et al. Dimethylbenzanthracene carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res. 61, 2487–2491 (2001).

    CAS  PubMed  Google Scholar 

  10. Salvador, J.M. et al. Mice lacking the p53-Eefector gene Gadd45a develop a lupus-like syndrome. Immunity 16, 499–508 (2002).

    Article  CAS  Google Scholar 

  11. Rincon, M. MAP-kinase signaling pathways in T cells. Curr. Opin. Immunol. 13, 339–345 (2001).

    Article  CAS  Google Scholar 

  12. Salvador, J.M. et al. Alternative p38 activation pathway mediated by T cell receptor–proximal tyrosine kinases. Nat. Immunol. advance online publication, 27 February 2005 (10.1038/ni1177).

  13. Takekawa, M. & Saito, H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95, 521–530 (1998).

    Article  CAS  Google Scholar 

  14. Mita, H., Tsutsui, J., Takekawa, M., Witten, E.A. & Saito, H. Regulation of MTK1/MEKK4 kinase activity by its N-terminal autoinhibitory domain and GADD45 binding. Mol. Cell. Biol. 22, 4544–4555 (2002).

    Article  CAS  Google Scholar 

  15. Chi, H., Lu, B., Takekawa, M., Davis, R.J. & Flavell, R.A. GADD45beta/GADD45gamma and MEKK4 comprise a genetic pathway mediating STAT4-independent IFNγ production in T cells. EMBO J. 23, 1576–1586 (2004).

    Article  CAS  Google Scholar 

  16. Weiss, L. et al. Regulation of c-Jun NH2-terminal kinase (Jnk) gene expression during T cell activation. J. Exp. Med. 191, 139–146 (2000).

    Article  CAS  Google Scholar 

  17. Dong, C., Davis, R.J. & Flavell, R.A. MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55–72 (2002).

    Article  CAS  Google Scholar 

  18. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  Google Scholar 

  19. Giroux, S. et al. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol. 9, 369–372 (1999).

    Article  CAS  Google Scholar 

  20. Alberola-Ila, J., Forbush, K.A., Seger, R., Krebs, E.G. & Perlmutter, R.M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623 (1995).

    Article  CAS  Google Scholar 

  21. Pagès, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286, 1374–1377 (1999).

    Article  Google Scholar 

  22. Bulavin, D.V., Kovalsky, O., Hollander, M.C. & Fornace, A.J.J. Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a. Mol. Cell. Biol. 23, 3859–3871 (2003).

    Article  CAS  Google Scholar 

  23. Schaeffer, H.J. & Weber, M.J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444 (1999).

    Article  CAS  Google Scholar 

  24. Dong, C. et al. JNK is required for effector T-cell function but not for T-cell activation. Nature 405, 91–94 (2000).

    Article  CAS  Google Scholar 

  25. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  Google Scholar 

  26. Brancho, D. et al. Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 17, 1969–1978 (2003).

    Article  CAS  Google Scholar 

  27. Tanaka, N. et al. Differential involvement of p38 mitogen-activated protein kinase kinases MKK3 and MKK6 in T-cell apoptosis. EMBO Rep. 3, 785–791 (2002).

    Article  CAS  Google Scholar 

  28. Wang, X.S. et al. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J. Biol. Chem. 272, 23668–23674 (1997).

    Article  CAS  Google Scholar 

  29. Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270, 2008–2011 (1995).

    Article  CAS  Google Scholar 

  30. Ichijo, H. et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90–94 (1997).

    Article  CAS  Google Scholar 

  31. Wang, X.S. et al. Molecular cloning and characterization of a novel protein kinase with a catalytic domain homologous to mitogen-activated protein kinase kinase kinase. J. Biol. Chem. 271, 31607–31611 (1996).

    Article  CAS  Google Scholar 

  32. Ge, B. et al. MAPKK-independent activation of p38α mediated by TAB1-dependent autophosphorylation of p38α. Science 295, 1291–1294 (2002).

    Article  CAS  Google Scholar 

  33. Hildesheim, J. et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res. 62, 7305–7315 (2002).

    CAS  PubMed  Google Scholar 

  34. Gong, Q. et al. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat. Immunol. 2, 29–36 (2001).

    Article  CAS  Google Scholar 

  35. Ward, S.G., Parry, R.V., Matthews, J. & O'Neill, L. A p38 MAP kinase inhibitor SB203580 inhibits CD28-dependent T cell proliferation and IL-2 production. Biochem. Soc. Trans. 25, 304S (1997).

    Article  CAS  Google Scholar 

  36. Matsuda, S., Moriguchi, T., Koyasu, S. & Nishida, E. T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J. Biol. Chem. 273, 12378–12382 (1998).

    Article  CAS  Google Scholar 

  37. Zhang, J. et al. p38 mitogen-activated protein kinase mediates signal integration of TCR/CD28 costimulation in primary murine T cells. J. Immunol. 162, 3819–3829 (1999).

    CAS  PubMed  Google Scholar 

  38. Haeryfar, S.M. & Hoskin, D.W. Selective pharmacological inhibitors reveal differences between Thy-1- and T cell receptor-mediated signal transduction in mouse T lymphocytes. Int. Immunopharmacol. 1, 689–698 (2001).

    Article  CAS  Google Scholar 

  39. Allison, A.C. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 47, 63–83 (2000).

    Article  CAS  Google Scholar 

  40. Lee, J.C. et al. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47, 185–201 (2000).

    Article  CAS  Google Scholar 

  41. Kovalsky, O., Lung, F.D., Roller, P.P. & Fornace, A.J.J. Oligomerization of human Gadd45a protein. J. Biol. Chem. 276, 39330–39339 (2001).

    Article  CAS  Google Scholar 

  42. Zhan, Q. et al. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18, 2892–2900 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gutkind for critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D Ashwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvador, J., Mittelstadt, P., Belova, G. et al. The autoimmune suppressor Gadd45α inhibits the T cell alternative p38 activation pathway. Nat Immunol 6, 396–402 (2005). https://doi.org/10.1038/ni1176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing