Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo

Abstract

The duration of T cell receptor (TCR) signaling is thought to be important for thymocyte differentiation into the CD4 or CD8 lineage. However, the in vivo relevance of this hypothesis is unclear. Here we divided T cell positive selection into genetically separable developmental steps by confining TCR signal transduction to discrete thymocyte developmental windows. TCR signals confined to the double-positive thymocyte stage promoted CD8, but not CD4, lineage differentiation. Major histocompatibility complex (MHC) class II–restricted thymocytes were, instead, redirected into the CD8 lineage. These findings support the hypothesis that distinct kinetics of MHC class I– and MHC class II–induced TCR signals direct intrathymic developmental decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thymocyte populations in ADA-Zap70+/− and ADA-Zap70+/+ mice.
Figure 2: DP-confined TCR signaling enables CD8 lineage differentiation.
Figure 3: DP-confined TCR signaling fails to promote CD4 lineage differentiation.
Figure 4: DP-confined TCR signaling redirects MHC class II–restricted thymocytes into the CD8 lineage.
Figure 5: Extending the survival of ADA-Zap70+/− thymocytes restores CD8 SP thymocyte populations.
Figure 6: CD5 disruption in ADA-Zap70+/− mice extends the developmental window of TCR signals transduction and restores CD4 lineage differentiation.

Similar content being viewed by others

References

  1. Janeway, C.A.J. & Bottomly, K. Signals and signs for lymphocyte responses. Cell 76, 275–285 (1994).

    Article  CAS  Google Scholar 

  2. Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  Google Scholar 

  3. Kisielow, P. & von Boehmer, H. Development and selection of T cells: facts and puzzles. Adv. Immunol. 58, 87–209 (1995).

    Article  CAS  Google Scholar 

  4. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    Article  CAS  Google Scholar 

  5. Hogquist, K.A. Signal strength in thymic selection and lineage commitment. Curr. Opin. Immunol. 13, 225–231 (2001).

    Article  CAS  Google Scholar 

  6. Singer, A. New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Curr. Opin. Immunol. 14, 207–215 (2002).

    Article  CAS  Google Scholar 

  7. Germain, R.N. T-cell development and the CD4-CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  Google Scholar 

  8. Itano, A. et al. The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells. J. Exp. Med. 183, 731–741 (1996).

    Article  CAS  Google Scholar 

  9. Matechak, E.O., Killeen, N., Hedrick, S.M. & Fowlkes, B.J. MHC class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity 4, 337–347 (1996).

    Article  CAS  Google Scholar 

  10. Sharp, L.L., Schwarz, D.A., Bott, C.M., Marshall, C.J. & Hedrick, S.M. The influence of the MAPK pathway on T cell lineage commitment. Immunity 7, 609–618 (1997).

    Article  CAS  Google Scholar 

  11. Bommhardt, U., Cole, M.S., Tso, J.Y. & Zamoyska, R. Signals through CD8 or CD4 can induce commitment to the CD4 lineage in the thymus. Eur. J. Immunol. 27, 1152–1163 (1997).

    Article  CAS  Google Scholar 

  12. Sharp, L.L. & Hedrick, S.M. Commitment to the CD4 lineage mediated by extracellular signal-related kinase mitogen-activated protein kinase and lck signaling. J. Immunol. 163, 6598–6605 (1999).

    CAS  PubMed  Google Scholar 

  13. Hernandez-Hoyos, G., Sohn, S.J., Rothenberg, E.V. & Alberola-Ila, J. Lck activity controls CD4/CD8 T cell lineage commitment. Immunity 12, 313–322 (2000).

    Article  CAS  Google Scholar 

  14. Wilkinson, B. & Kaye, J. Requirement for sustained MAPK signaling in both CD4 and CD8 lineage commitment: a threshold model. Cell. Immunol. 211, 86–95 (2001).

    Article  CAS  Google Scholar 

  15. Shores, E.W. et al. Role of TCR ζ chain in T cell development and selection. Science 266, 1047–1050 (1994).

    Article  CAS  Google Scholar 

  16. Fischer, K.D. et al. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+CD8+ thymocytes. Nature 374, 474–477 (1995).

    Article  CAS  Google Scholar 

  17. Tarakhovsky, A. et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374, 467–470 (1995).

    Article  CAS  Google Scholar 

  18. Zhang, R., Alt, F.W., Davidson, L., Orkin, S.H. & Swat, W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 374, 470–473 (1995).

    Article  CAS  Google Scholar 

  19. Hashimoto, K. et al. Requirement for p56lck tyrosine kinase activation in T cell receptor-mediated thymic selection. J. Exp. Med. 184, 931–943 (1996).

    Article  CAS  Google Scholar 

  20. Shores, E.W. et al. Role of the multiple T cell receptor (TCR)-ζ chain signaling motifs in selection of the T cell repertoire. J. Exp. Med. 185, 893–900 (1997).

    Article  CAS  Google Scholar 

  21. Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    Article  CAS  Google Scholar 

  22. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R.N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).

    Article  CAS  Google Scholar 

  23. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    Article  CAS  Google Scholar 

  24. Bosselut, R., Guinter, T.I., Sharrow, S.O. & Singer, A. Unraveling a revealing paradox: Why major histocompatibility complex I-signaled thymocytes “paradoxically” appear as CD4+8lo transitional cells during positive selection of CD8+ T cells. J. Exp. Med. 197, 1709–1719 (2003).

    Article  CAS  Google Scholar 

  25. Chan, A.C., Iwashima, M., Turck, C.W. & Weiss, A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71, 649–662 (1992).

    Article  CAS  Google Scholar 

  26. Iwashima, M., Irving, B.A., van Oers, N.S., Chan, A.C. & Weiss, A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263, 1136–1139 (1994).

    Article  CAS  Google Scholar 

  27. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).

    Article  CAS  Google Scholar 

  28. Kadlecek, T.A. et al. Differential requirements for ZAP-70 in TCR signaling and T cell development. J. Immunol. 161, 4688–4694 (1998).

    CAS  PubMed  Google Scholar 

  29. Liu, X. et al. Restricting Zap70 expression to CD4+CD8+ thymocytes reveals a T cell receptor-dependent proofreading mechanism controlling the completion of positive selection. J. Exp. Med. 197, 363–373 (2003).

    Article  CAS  Google Scholar 

  30. Aronow, B. et al. Evidence for a complex regulatory array in the first intron of the human adenosine deaminase gene. Genes Dev. 3, 1384–1400 (1989).

    Article  CAS  Google Scholar 

  31. Lundberg, K., Heath, W., Kontgen, F., Carbone, F.R. & Shortman, K. Intermediate steps in positive selection: differentiation of CD4+8intTCRint thymocytes into CD48+TCRhi thymocytes. J. Exp. Med. 181, 1643–1651 (1995).

    Article  CAS  Google Scholar 

  32. Suzuki, H., Punt, J.A., Granger, L.G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity 2, 413–425 (1995).

    Article  CAS  Google Scholar 

  33. Swat, W., Dessing, M., von Boehmer, H. & Kisielow, P. CD69 expression during selection and maturation of CD4+8+ thymocytes. Eur. J. Immunol. 23, 739–746 (1993).

    Article  CAS  Google Scholar 

  34. Sebzda, E., Choi, M., Fung-Leung, W.P., Mak, T.W. & Ohashi, P.S. Peptide-induced positive selection of TCR transgenic thymocytes in a coreceptor-independent manner. Immunity 6, 643–653 (1997).

    Article  CAS  Google Scholar 

  35. Bhandoola, A., Kithiganahalli, B., Granger, L. & Singer, A. Programming for cytotoxic effector function occurs concomitantly with CD4 extinction during CD8+ T cell differentiation in the thymus. Int. Immunol. 12, 1035–1040 (2000).

    Article  CAS  Google Scholar 

  36. Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA 100, 7731–7736 (2003).

    Article  CAS  Google Scholar 

  37. Linette, G.P. et al. Bcl-2 is upregulated at the CD4+CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1, 197–205 (1994).

    Article  CAS  Google Scholar 

  38. Hernandez-Hoyos, G., Anderson, M.K., Wang, C., Rothenberg, E.V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003).

    Article  CAS  Google Scholar 

  39. Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  Google Scholar 

  40. Lucas, B. & Germain, R.N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 5, 461–477 (1996).

    Article  CAS  Google Scholar 

  41. Bhandoola, A. et al. Positive selection as a developmental progression initiated by αβ TCR signals that fix TCR specificity prior to lineage commitment. Immunity 10, 301–311 (1999).

    Article  CAS  Google Scholar 

  42. Yasutomo, K., Lucas, B. & Germain, R.N. TCR signaling for initiation and completion of thymocyte positive selection has distinct requirements for ligand quality and presenting cell type. J. Immunol. 165, 3015–3022 (2000).

    Article  CAS  Google Scholar 

  43. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).

    Article  CAS  Google Scholar 

  44. Kaye, J., Vasquez, N.J. & Hedrick, S.M. Involvement of the same region of the T cell antigen receptor in thymic selection and foreign peptide recognition. J. Immunol. 148, 3342–3353 (1992).

    CAS  PubMed  Google Scholar 

  45. Sentman, C.L., Shutter, J.R., Hockenbery, D., Kanagawa, O. & Korsmeyer, S.J. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879–888 (1991).

    Article  CAS  Google Scholar 

  46. Azzam, H.S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).

    Article  CAS  Google Scholar 

  47. Jones, R.G. et al. Protein kinase B regulates T lymphocyte survival, nuclear factor κB activation, and Bcl-XL levels in vivo . J. Exp. Med. 191, 1721–1734 (2000).

    Article  CAS  Google Scholar 

  48. Tarakhovsky, A. et al. A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 269, 535–537 (1995).

    Article  CAS  Google Scholar 

  49. Pena-Rossi, C. et al. Negative regulation of CD4 lineage development and responses by CD5. J. Immunol. 163, 6494–6501 (1999).

    CAS  PubMed  Google Scholar 

  50. Samelson, L.E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    Article  CAS  Google Scholar 

  51. Azzam, H.S. et al. Fine tuning of TCR signaling by CD5. J. Immunol. 166, 5464–5472 (2001).

    Article  CAS  Google Scholar 

  52. Sosinowski, T., Killeen, N. & Weiss, A. The Src-like adaptor protein downregulates the T cell receptor on CD4+CD8+ thymocytes and regulates positive selection. Immunity 15, 457–466 (2001).

    Article  CAS  Google Scholar 

  53. Gao, E.K., Lo, D., Cheney, R., Kanagawa, O. & Sprent, J. Abnormal differentiation of thymocytes in mice treated with cyclosporin A. Nature 336, 176–179 (1988).

    Article  CAS  Google Scholar 

  54. Bosselut, R., Feigenbaum, L., Sharrow, S.O. & Singer, A. Strength of signaling by CD4 and CD8 coreceptor tails determines the number but not the lineage direction of positively selected thymocytes. Immunity 14, 483–494 (2001).

    Article  CAS  Google Scholar 

  55. Fung-Leung, W.P. et al. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65, 443–449 (1991).

    Article  CAS  Google Scholar 

  56. Schmedt, C. et al. Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature 394, 901–904 (1998).

    Article  CAS  Google Scholar 

  57. Sohn, S.J., Forbush, K.A., Pan, X.C. & Perlmutter, R.M. Activated p56lck directs maturation of both CD4 and CD8 single-positive thymocytes. J. Immunol. 166, 2209–2217 (2001).

    Article  CAS  Google Scholar 

  58. Yu, Q., Erman, B., Bhandoola, A., Sharrow, S.O. & Singer, A. In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8+ T cells. J. Exp. Med. 197, 475–487 (2003).

    Article  CAS  Google Scholar 

  59. Chong, M.M. et al. Suppressor of cytokine signaling-1 is a critical regulator of interleukin-7-dependent CD8+ T cell differentiation. Immunity 18, 475–487 (2003).

    Article  CAS  Google Scholar 

  60. Chan, S., Waltzinger, C., Tarakhovsky, A., Benoist, C. & Mathis, D. An influence of CD5 on the selection of CD4-lineage T cells. Eur. J. Immunol. 29, 2916–2922 (1999).

    Article  CAS  Google Scholar 

  61. Wilkinson, B. et al. TOX: an HMG box protein implicated in the regulation of thymocyte selection. Nat. Immunol. 3, 272–280 (2002).

    Article  CAS  Google Scholar 

  62. Davis, C.B., Killeen, N., Crooks, M.E., Raulet, D. & Littman, D.R. Evidence for a stochastic mechanism in the differentiation of mature subsets of T lymphocytes. Cell 73, 237–247 (1993).

    Article  CAS  Google Scholar 

  63. Baron, A., Hafen, K. & von Boehmer, H. A human CD4 transgene rescues CD4CD8+ cells in β2-microglobulin-deficient mice. Eur. J. Immunol. 24, 1933–1936 (1994).

    Article  CAS  Google Scholar 

  64. Leung, R.K. et al. Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nat. Immunol. 2, 1167–1173 (2001).

    Article  CAS  Google Scholar 

  65. Zijlstra, M. et al. β2-microglobulin deficient mice lack CD48+ cytolytic T cells. Nature 344, 742–746 (1990).

    Article  CAS  Google Scholar 

  66. June, C.H. & Rabinovitch, P.S. in Current Protocols in Immunology (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W., eds.) 5.5.1–5.5.15 (Wiley Class Interscience, New York, New York, 1991).

    Google Scholar 

Download references

Acknowledgements

We thank L. Samelson, P. Ohashi, A. Tarakhovsky for mice and reagents; A. Singer for mice and for support of the initial phases of this project; A. Adams, L. Granger and B. Taylor for flow cytometry; K. Wildt for technical assistance; G. Sanchez and P. Mercado for animal care and assistance with mouse genotyping; A. Bhandoola and A. Singer for discussions; and J. Ashwell, A. Bhandoola, A. Gegonne, P. Schwartzberg and A. Singer for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Bosselut.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Bosselut, R. Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo. Nat Immunol 5, 280–288 (2004). https://doi.org/10.1038/ni1040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing