Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intrinsic host restrictions to HIV-1 and mechanisms of viral escape

Abstract

To replicate in their hosts, viruses have to navigate the complexities of the mammalian cell, co-opting mechanisms of cellular physiology while defeating restriction factors that are dedicated to halting their progression. Primate lentiviruses devote a relatively large portion of their coding capacity to counteracting restriction factors by encoding accessory proteins dedicated to neutralizing the antiviral function of these intracellular inhibitors. Research into the roles of the accessory proteins has revealed the existence of previously undetected intrinsic defenses, provided insight into the evolution of primate lentiviruses as they adapt to new species and uncovered new targets for the development of therapeutics. This Review discusses the biology of the restriction factors APOBEC3, SAMHD1 and tetherin and the viral accessory proteins that counteract them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The host restriction factors SAMHD1, APOBEC3 and tetherin, and the lentiviral accessory proteins that counteract them in the context of virus replication.
Figure 2: Overview of the mode of APOBEC3 (A3) restriction and the implications of suboptimal Vif activity on HIV transmission and diversification.
Figure 3: Proposed models for SAMHD1-mediated restriction.
Figure 4: Tetherin blocks virus release, activates an innate immune response and is counteracted by Vpu or Nef.

Similar content being viewed by others

References

  1. Strebel, K. et al. The HIV 'A' (sor) gene product is essential for virus infectivity. Nature 328, 728–730 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Gabuzda, D.H. et al. Role of Vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol. 66, 6489–6495 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cullen, B.R. HIV-1 Vif: counteracting innate antiretroviral defenses. Mol. Ther. 8, 525–527 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Simon, J.H., Gaddis, N.C., Fouchier, R.A. & Malim, M.H. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat. Med. 4, 1397–1400 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Sheehy, A.M., Gaddis, N., Choi, J. & Malim, M. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Sawyer, S.L., Emerman, M. & Malik, H.S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol. 2, E275 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Conticello, S.G., Thomas, C.J., Petersen-Mahrt, S.K. & Neuberger, M.S. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol. Biol. Evol. 22, 367–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Refsland, E.W. et al. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res. 38, 4274–4284 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Refsland, E.W. & Harris, R.S. The APOBEC3 family of retroelement restriction factors. Curr. Top. Microbiol. Immunol. 371, 1–27 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Desimmie, B.A. et al. Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. J. Mol. Biol. 426, 1220–1245 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Bishop, K.N. et al. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr. Biol. 14, 1392–1396 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Apolonia, L. et al. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1. PLoS Pathog. 11, e1004609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zennou, V., Perez-Caballero, D., Gottlinger, H. & Bieniasz, P.D. APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J. Virol. 78, 12058–12061 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aguiar, R.S., Lovsin, N., Tanuri, A. & Peterlin, B.M. Vpr.A3A chimera inhibits HIV replication. J. Biol. Chem. 283, 2518–2525 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Suspène, R., Rusniok, C., Vartanian, J.P. & Wain-Hobson, S. Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication. Nucleic Acids Res. 34, 4677–4684 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, Q. et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat. Struct. Mol. Biol. 11, 435–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, E.Y. et al. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection. PLoS Pathog. 10, e1004281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holmes, R.K., Malim, M.H. & Bishop, K.N. APOBEC-mediated viral restriction: not simply editing? Trends Biochem. Sci. 32, 118–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Bishop, K.N., Verma, M., Kim, E.Y., Wolinsky, S.M. & Malim, M.H. APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog. 4, e1000231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Browne, E.P., Allers, C. & Landau, N.R. Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. Virology 387, 313–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Albin, J.S., Brown, W.L. & Harris, R.S. Catalytic activity of APOBEC3F is required for efficient restriction of Vif-deficient human immunodeficiency virus. Virology 450–451, 49–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Mehle, A., Thomas, E.R., Rajendran, K.S. & Gabuzda, D. A zinc-binding region in Vif binds Cul5 and determines cullin selection. J. Biol. Chem. 281, 17259–17265 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Jäger, S. et al. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 481, 371–375 (2012).

    Article  CAS  Google Scholar 

  29. Hultquist, J.F., Binka, M., LaRue, R.S., Simon, V. & Harris, R.S. Vif proteins of human and simian immunodeficiency viruses require cellular CBFbeta to degrade APOBEC3 restriction factors. J. Virol. 86, 2874–2877 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, D.Y. et al. CBFbeta stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Mol. Cell 49, 632–644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, W., Du, J., Evans, S.L., Yu, Y. & Yu, X.F. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Nature 481, 376–379 (2012).

    Article  CAS  Google Scholar 

  32. Sheehy, A.M., Gaddis, N.C. & Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 9, 1404–1407 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Guo, Y. et al. Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505, 229–233 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Simon, V. et al. Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog. 1, e6 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Russell, R.A. & Pathak, V.K. Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J. Virol. 81, 8201–8210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ooms, M. et al. HIV-1 Vif adaptation to human APOBEC3H haplotypes. Cell Host Microbe 14, 411–421 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Mulder, L.C., Harari, A. & Simon, V. Cytidine deamination induced HIV-1 drug resistance. Proc. Natl. Acad. Sci. USA 105, 5501–5506 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim, E.Y. et al. Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification and accelerate adaptation to selective pressure. J. Virol. 84, 10402–10405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fourati, S. et al. Partially active HIV-1 Vif alleles facilitate viral escape from specific antiretrovirals. AIDS 24, 2313–2321 (2010).

    CAS  PubMed  Google Scholar 

  40. Sato, K. et al. APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model. PLoS Pathog. 10, e1004453 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krisko, J.F., Martinez-Torres, F., Foster, J.L. & Garcia, J.V. HIV restriction by APOBEC3 in humanized mice. PLoS Pathog. 9, e1003242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casartelli, N. et al. The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells. J. Exp. Med. 207, 39–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwabu, Y., Fujita, H., Tanaka, Y., Sata, T. & Tokunaga, K. Direct internalization of cell-surface BST-2/tetherin by the HIV-1 accessory protein Vpu. Commun. Integr. Biol. 3, 366–369 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Iwabu, Y. et al. Differential anti-APOBEC3G activity of HIV-1 Vif proteins derived from different subtypes. J. Biol. Chem. 285, 35350–35358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Binka, M., Ooms, M., Steward, M. & Simon, V. The activity spectrum of Vif from multiple HIV-1 subtypes against APOBEC3G, APOBEC3F, and APOBEC3H. J. Virol. 86, 49–59 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. OhAinle, M., Kerns, J.A., Li, M.M.H., Malik, H.S. & Emerman, M. Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 4, 249–259 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Larue, R.S., Lengyel, J., Jonsson, S.R., Andresdottir, V. & Harris, R.S. Lentiviral Vif degrades the APOBEC3Z3/APOBEC3H protein of its mammalian host and is capable of cross-species activity. J. Virol. 84, 8193–8201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tan, L., Sarkis, P.T., Wang, T., Tian, C. & Yu, X.F. Sole copy of Z2-type human cytidine deaminase APOBEC3H has inhibitory activity against retrotransposons and HIV-1. FASEB J. 23, 279–287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harari, A., Ooms, M., Mulder, L.C. & Simon, V. Polymorphisms and splice variants influence the antiretroviral activity of human APOBEC3H. J. Virol. 83, 295–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Refsland, E.W. et al. Natural polymorphisms in human APOBEC3H and HIV-1 Vif combine in primary T lymphocytes to affect viral G-to-A mutation levels and infectivity. PLoS Genet. 10, e1004761 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bogerd, H.P., Doehle, B.P., Wiegand, H.L. & Cullen, B.R. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc. Natl. Acad. Sci. USA 101, 3770–3774 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mangeat, B., Turelli, P., Liao, S. & Trono, D. A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J. Biol. Chem. 279, 14481–14483 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Schröfelbauer, B., Chen, D. & Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl. Acad. Sci. USA 101, 3927–3932 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krupp, A. et al. APOBEC3G polymorphism as a selective barrier to cross-species transmission and emergence of pathogenic SIV and AIDS in a primate host. PLoS Pathog. 9, e1003641 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tristem, M., Marshall, C., Karpas, A., Petrik, J. & Hill, F. Origin of vpx in lentiviruses. Nature 347, 341–342 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Tristem, M., Marshall, C., Karpas, A. & Hill, F. Evolution of the primate lentiviruses: evidence from vpx and vpr. EMBO J. 11, 3405–3412 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guyader, M., Emerman, M., Montagnier, L. & Peden, K. VPX mutants of HIV-2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes. EMBO J. 8, 1169–1175 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu, X.F., Yu, Q.C., Essex, M. & Lee, T.H. The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage. J. Virol. 65, 5088–5091 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Baldauf, H.M. et al. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat. Med. 18, 1682–1687 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Descours, B. et al. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. Retrovirology 9, 87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goujon, C. et al. With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther. 13, 991–994 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Sunseri, N., O'Brien, M., Bhardwaj, N. & Landau, N.R. Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J. Virol. 85, 6263–6274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bobadilla, S., Sunseri, N. & Landau, N.R. Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein. Gene Ther. 20, 514–520 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Durand, S. et al. Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes. J. Virol. 87, 234–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Norton, T.D., Miller, E.A., Bhardwaj, N. & Landau, N.R. Vpx-containing dendritic cell vaccine induces CTLs and reactivates latent HIV-1 in vitro. Gene Ther. 22, 11–20 (2015).

    Article  CAS  Google Scholar 

  66. Le Rouzic, E. et al. HIV1 Vpr arrests the cell cycle by recruiting DCAF1/VprBP, a receptor of the Cul4–DDB1 ubiquitin ligase. Cell Cycle 6, 182–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Srivastava, S. et al. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog. 4, e1000059 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Behrendt, R. et al. Mouse SAMHD1 has antiretroviral activity and suppresses a spontaneous cell-intrinsic antiviral response. Cell Reports 4, 689–696 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Rehwinkel, J. et al. SAMHD1-dependent retroviral control and escape in mice. EMBO J. 32, 2454–2462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hofmann, H. et al. The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus. J. Virol. 86, 12552–12560 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brandariz-Nuñez, A. et al. Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology 9, 49 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, B., Nguyen, L.A., Daddacha, W. & Hollenbaugh, J.A. Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. J. Biol. Chem. 287, 21570–21574 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jáuregui, P., Logue, E.C., Schultz, M.L., Fung, S. & Landau, N.R. Degradation of SAMHD1 by Vpx is independent of uncoating. J. Virol. (11 March 2015).

  76. Goldstone, D.C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Powell, R.D., Holland, P.J., Hollis, T. & Perrino, F.W. Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J. Biol. Chem. 286, 43596–43600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lahouassa, H. et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 13, 223–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gramberg, T. et al. Restriction of diverse retroviruses by SAMHD1. Retrovirology 10, 26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pauls, E. et al. Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells. J. Immunol. 193, 1988–1997 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. St Gelais, C. et al. Identification of cellular proteins interacting with the retroviral restriction factor SAMHD1. J. Virol. 88, 5834–5844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. White, T.E. et al. The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 13, 441–451 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Cribier, A., Descours, B., Valadao, A.L., Laguette, N. & Benkirane, M. Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Reports 3, 1036–1043 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Beloglazova, N. et al. Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J. Biol. Chem. 288, 8101–8110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ryoo, J. et al. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat. Med. 20, 936–941 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hofmann, H. et al. Inhibition of CUL4A Neddylation causes a reversible block to SAMHD1-mediated restriction of HIV-1. J. Virol. 87, 11741–11750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mlcochova, P., Watters, S.A., Towers, G.J., Noursadeghi, M. & Gupta, R.K. Vpx complementation of 'non-macrophage tropic' R5 viruses reveals robust entry of infectious HIV-1 cores into macrophages. Retrovirology 11, 25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Crow, Y.J. et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A. 167, 296–312 (2015).

    Article  CAS  Google Scholar 

  89. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903–906 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Yan, N., Regalado-Magdos, A.D., Stiggelbout, B., Lee-Kirsch, M.A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhao, K. et al. Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-Goutieres syndrome-related SAMHD1. Cell Rep. 4, 1108–1115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lim, E.S. et al. The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx. Cell Host Microbe 11, 194–204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Etienne, L., Hahn, B.H., Sharp, P.M., Matsen, F.A. & Emerman, M. Gene loss and adaptation to hominids underlie the ancient origin of HIV-1. Cell Host Microbe 14, 85–92 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lenzi, G.M., Domaoal, R.A., Kim, D., Schinazi, R.F. & Kim, B. Kinetic variations between reverse transcriptases of viral protein X coding and noncoding lentiviruses. Retrovirology 11, 111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kyei, G.B., Cheng, X., Ramani, R. & Ratner, L. Cyclin L2 is a critical HIV dependency factor in macrophages that controls SAMHD1 abundance. Cell Host Microbe 17, 98–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Westmoreland, S.V. et al. SIV vpx is essential for macrophage infection but not for development of AIDS. PLoS ONE 9, e84463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Strebel, K., Klimkait, T., Maldarelli, F. & Martin, M.A. Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J. Virol. 63, 3784–3791 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Terwilliger, E.F., Cohen, E.A., Lu, Y.C., Sodroski, J.G. & Haseltine, W.A. Functional role of human immunodeficiency virus type 1 vpu. Proc. Natl. Acad. Sci. USA 86, 5163–5167 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Klimkait, T., Strebel, K., Hoggan, M.D., Martin, M.A. & Orenstein, J.M. The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J. Virol. 64, 621–629 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Willey, R.L., Maldarelli, F., Martin, M.A. & Strebel, K. Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160–CD4 complexes. J. Virol. 66, 226–234 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Neil, S.J., Eastman, S.W., Jouvenet, N. & Bieniasz, P.D. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2, e39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sakai, H., Tokunaga, K., Kawamura, M. & Adachi, A. Function of human immunodeficiency virus type 1 Vpu protein in various cell types. J. Gen. Virol. 76, 2717–2722 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Neil, S.J., Sandrin, V., Sundquist, W.I. & Bieniasz, P.D. An interferon-alpha-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein. Cell Host Microbe 2, 193–203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Varthakavi, V., Smith, R.M., Bour, S.P., Strebel, K. & Spearman, P. Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proc. Natl. Acad. Sci. USA 100, 15154–15159 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Neil, S.J., Zang, T. & Bieniasz, P.D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hinz, A. et al. Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain. Cell Host Microbe 7, 314–323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Venkatesh, S. & Bieniasz, P.D. Mechanism of HIV-1 virion entrapment by tetherin. PLoS Pathog. 9, e1003483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Perez-Caballero, D. et al. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139, 499–511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Galão, R.P., Le Tortorec, A., Pickering, S., Kueck, T. & Neil, S.J. Innate sensing of HIV-1 assembly by Tetherin induces NFκB-dependent proinflammatory responses. Cell Host Microbe 12, 633–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cocka, L.J. & Bates, P. Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities. PLoS Pathog. 8, e1002931 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Tokarev, A. et al. Stimulation of NF-κB activity by the HIV restriction factor BST2. J. Virol. 87, 2046–2057 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sauter, D. et al. Differential regulation of NF-κB-mediated proviral and antiviral host gene expression by primate lentiviral Nef and Vpu proteins. Cell Reports 10, 586–599 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Pickering, S. et al. Preservation of tetherin and CD4 counter-activities in circulating Vpu alleles despite extensive sequence variation within HIV-1 infected individuals. PLoS Pathog. 10, e1003895 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jia, B. et al. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog. 5, e1000429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, F. et al. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 6, 54–67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lim, E.S., Malik, H.S. & Emerman, M. Ancient adaptive evolution of tetherin shaped the functions of Vpu and Nef in human immunodeficiency virus and primate lentiviruses. J. Virol. 84, 7124–7134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sauter, D. et al. Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe 6, 409–421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kluge, S.F. et al. The transmembrane domain of HIV-1 Vpu is sufficient to confer anti-tetherin activity to SIVcpz and SIVgor Vpu proteins: cytoplasmic determinants of Vpu function. Retrovirology 10, 32 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bour, S. & Strebel, K. The human immunodeficiency virus (HIV) type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses. J. Virol. 70, 8285–8300 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bour, S., Schubert, U., Peden, K. & Strebel, K. The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release: a Vpu-like factor? J. Virol. 70, 820–829 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Serra-Moreno, R., Jia, B., Breed, M., Alvarez, X. & Evans, D.T. Compensatory changes in the cytoplasmic tail of gp41 confer resistance to tetherin/BST-2 in a pathogenic nef-deleted SIV. Cell Host Microbe 9, 46–57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Ooms and L.C.F. Mulder for critical reading of the manuscript. The work was supported by US National Institutes of Health/National Institute of Allergy and Infectious Disease grants to V.S. (AI064001, AI090935) and N.R.L. (AI067059, AI058864), the Vilcek Fellowship Endowment Fund to N.B. and the American Foundation for AIDS Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel R Landau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, V., Bloch, N. & Landau, N. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 16, 546–553 (2015). https://doi.org/10.1038/ni.3156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing