Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sources of and processes controlling CO2 emissions change with the size of streams and rivers

Abstract

Carbon dioxide (CO2) evasion from streams and rivers to the atmosphere represents a substantial flux in the global carbon cycle1,2,3. The proportions of CO2 emitted from streams and rivers that come from terrestrially derived CO2 or from CO2 produced within freshwater ecosystems through aquatic metabolism are not well quantified. Here we estimated CO2 emissions from running waters in the contiguous United States, based on freshwater chemical and physical characteristics and modelled gas transfer velocities at 1463 United States Geological Survey monitoring sites. We then assessed CO2 production from aquatic metabolism, compiled from previously published measurements of net ecosystem production from 187 streams and rivers across the contiguous United States. We find that CO2 produced by aquatic metabolism contributes about 28% of CO2 evasion from streams and rivers with flows between 0.0001 and 19,000 m3 s−1. We mathematically modelled CO2 flux from groundwater into running waters along a stream–river continuum to evaluate the relationship between stream size and CO2 source. Terrestrially derived CO2 dominates emissions from small streams, and the percentage of CO2 emissions from aquatic metabolism increases with stream size. We suggest that the relative role of rivers as conduits for terrestrial CO2 efflux and as reactors mineralizing terrestrial organic carbon is a function of their size and connectivity with landscapes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CO2 emissions and internal CO2 production in streams and rivers of the contiguous United States.
Figure 2: Modelled CO2 fluxes and groundwater input rates along a stream–river continuum.
Figure 3: Sources and magnitude of net CO2 emissions along a theoretical stream–river continuum.

Similar content being viewed by others

References

  1. Cole, J. J. et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007).

    Article  Google Scholar 

  2. Battin, T. J. et al. The boundless carbon cycle. Nature Geosci. 2, 598–600 (2009).

    Article  Google Scholar 

  3. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  4. Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article  Google Scholar 

  5. Battin, T. J. et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geosci. 1, 95–100 (2008).

    Article  Google Scholar 

  6. Öquist, M. G. et al. The full annual carbon balance of boreal forest is highly sensitive to precipitation. Environ. Sci. Technol. Lett. 1, 315–319 (2014).

    Article  Google Scholar 

  7. Buffam, I. et al. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Glob. Change Biol. 17, 1193–1211 (2011).

    Article  Google Scholar 

  8. Turner, D. P., Jacobson, A. R., Ritts, W. D., Wang, W. L. & Nemani, R. A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning. Glob. Change Biol. 19, 3516–3528 (2013).

    Google Scholar 

  9. Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geosci. 4, 839–842 (2011).

    Article  Google Scholar 

  10. Lundin, E. J., Giesler, R., Persson, A., Thompson, M. S. & Karlsson, J. Integrating carbon emissions from lakes and streams in a subarctic catchment. J. Geophys. Res. Biogeosci. 118, 1200–1207 (2013).

    Article  Google Scholar 

  11. Crawford, J. T. et al. CO2 and CH4 emissions from streams in a lake-rich landscape: Patterns, controls, and regional significance. Glob. Biogeochem. Cycles 28, 197–210 (2014).

    Article  Google Scholar 

  12. Cole, J. J. & Caraco, N. F. Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism. Mar. Freshwat. Res. 52, 101–110 (2001).

    Article  Google Scholar 

  13. Duarte, C. M. & Prairie, Y. T. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8, 862–870 (2005).

    Article  Google Scholar 

  14. Marcarelli, A. M., Baxter, C. V., Mineau, M. M. & Hall, R. O. Quantity and quality: Unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92, 1215–1225 (2011).

    Article  Google Scholar 

  15. Jones, J. B., Stanley, E. H. & Mulholland, P. J. Long-term decline in carbon dioxide supersaturation in rivers across the contiguous United States. Geophys. Res. Lett. 30, 1495 (2003).

    Google Scholar 

  16. Hannes, P. et al. Scales and drivers of temporal p CO 2 dynamics in an Alpine stream. J. Geophys. Res. Biogeosci. 119, 1078–1091 (2014).

    Google Scholar 

  17. Lynch, J. K., Beatty, C. M., Seidel, M. P., Jungst, L. J. & DeGrandpre, M. D. Controls on riverine CO2 over an annual cycle determined using direct, high temporal resolution p CO 2 measurements. J. Geophys. Res. 115, G03016 (2010).

    Article  Google Scholar 

  18. Roberts, B. J., Mulholland, P. J. & Hill, W. R. Multiple scales of temporal variability in ecosystem metabolism rates: Results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).

    Article  Google Scholar 

  19. Jones, J. B. & Mulholland, P. J. Carbon dioxide variation in a hardwood forest stream: An integrative measure of whole catchment soil respiration. Ecosystems 1, 183–196 (1998).

    Article  Google Scholar 

  20. Dodds, W. K. et al. Abiotic controls and temporal variability of river metabolism: Multiyear analyses of Mississippi and Chattahoochee River data. Freshwat. Sci. 32, 1073–1087 (2013).

    Article  Google Scholar 

  21. Abril, G. et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395–398 (2014).

    Article  Google Scholar 

  22. Ward, N. D. et al. Degradation of terrestrially derived macromolecules in the Amazon River. Nature Geosci. 6, 530–533 (2013).

    Article  Google Scholar 

  23. Freeze, R. A. & Cherry, J. A. Groundwater (Prentice-Hall, 1979).

    Google Scholar 

  24. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Article  Google Scholar 

  25. Lapierre, J.-F., Guillemette, F., Berggren, M. & del Giorgio, P. A. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nature Commun. 4, 2972 (2013).

    Article  Google Scholar 

  26. Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. 2, 41–53 (2012).

    Article  Google Scholar 

  27. Stackpoole, S. et al. in U. S. Geological Survey Professional Paper 1797: Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in ecosystems of the Western United States Ch. 10 (US Geological Survey, 2012); http://pubs.usgs.gov/pp/1797

  28. R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012); www.r-project.org

    Google Scholar 

  29. Harvey, J. W. & Wagner, B. J. in Streams and Ground Waters (eds Jones, J. B. & Mulholland, P. J.) 3–43 (Academic Press, 2000).

    Book  Google Scholar 

  30. Hall, R. O. & Tank, J. L. Correcting whole-stream estimates of metabolism for groundwater input. Limnol. Oceanogr. 3, 222–229 (2005).

    Article  Google Scholar 

  31. Greenway, H., Armstrong, W. & Colmer, T. D. Conditions lending to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann. Bot. 98, 9–32 (2006).

    Article  Google Scholar 

  32. Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R and BUGS (Elsevier, 2011).

    Google Scholar 

  33. Kruschke, J. K. Bayesian estimation supersedes the t test. J. Exp. Psychol. Gen. 142, 573–603 (2013).

    Article  Google Scholar 

  34. Meredith, M. & Kruschke, J. BEST: Bayesian Estimation Supersedes the t-Test R package version 0.2.0 (R Foundation for Statistical Computing, 2013); http://cran.r-project.org/web/packages/BEST

  35. Plummer, M. RJAGS: Bayesian Graphical Models Using MCMC R package version 3-10 (R Foundation for Statistical Computing, 2013); http://cran.r-project.org/web/packages/rjags

Download references

Acknowledgements

We thank P. Raymond for advice on CO2 emissions estimates. This work was supported by Kempestiftelserna.

Author information

Authors and Affiliations

Authors

Contributions

E.R.H. developed the ideas for this analysis and conceptual model in collaboration with J.Karlsson, R.O.H., R.A.S., J.Klaminder, M.R. and H.L. R.O.H. and E.R.H. derived the lateral inputs model and reviewed published metabolism estimates. D.B. provided CO2 and k600 estimates. E.R.H. analysed the data. E.R.H. wrote the paper with assistance from J.Karlsson, R.O.H., R.A.S., D.B., J.Klaminder, H.L. and M.R.

Corresponding author

Correspondence to E. R. Hotchkiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hotchkiss, E., Hall Jr, R., Sponseller, R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nature Geosci 8, 696–699 (2015). https://doi.org/10.1038/ngeo2507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2507

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology