Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Connections between the bulk composition, geodynamics and habitability of Earth

Abstract

The bulk composition of the silicate part of Earth has long been linked to chondritic meteorites. Ordinary chondrites — the most abundant meteorite class — are thought to represent planetary building materials. However, a landmark discovery showed that the 142Nd/144Nd ratio of the accessible parts of the modern terrestrial mantle on Earth is greater than that of ordinary chondrites. If Earth was derived from these precursors, mass balance requires that a missing reservoir with 142Nd/144Nd lower than ordinary chondrites was isolated from the accessible mantle within 20 to 30 million years of accretion. This reservoir would host the equivalent of the modern continents' budget of radioactive heat-producing elements (uranium, thorium and potassium), yet has not been discovered. We argue that this reservoir could have been lost to space by ablation from early impactors. If so, Earth's radiogenic heat generation is between 18 and 45% lower than estimates based on a chondritic composition. Calculations of Earth's thermal history that incorporate such reduced radiogenic heating are consistent with a transition to the current plate tectonic mode in the past 2.5 billion years or so, a late onset of the dynamo and an evolving rate of volcanic outgassing consistent with Earth's long-term habitable climate. Reduced heat production compared with Venus and Mars could also explain aspects of the differences between the current climatic regimes of these planets and Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three scenarios for the differentiation of Earth from a chondrite-based starting composition.
Figure 2: Primitive mantle normalized trace element patterns illustrating two-fold depletion of Earth's mantle.
Figure 3: Thermal, magnetic and climatic histories of a non-chondritic Earth.

Similar content being viewed by others

References

  1. Campbell, I. H. & O'Neill, H. S. C. Evidence against a chondritic Earth. Nature 483, 553–558 (2012).

    Article  Google Scholar 

  2. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Article  Google Scholar 

  3. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  4. Caro, G. Early silicate Earth differentiation. Annu. Rev. Earth. Planet. Sci. 39, 31–58 (2011).

    Article  Google Scholar 

  5. Bouhifd, M. A. et al. Superchondritic Sm/Nd ratio of the Earth: Impact of Earth's core formation. Earth Planet. Sci. Lett. 413, 158–166 (2015).

    Article  Google Scholar 

  6. Kinoshita, N. et al. A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology of the solar system. Science 335, 1614–1617 (2012).

    Article  Google Scholar 

  7. Andreasen, R. & Sharma, M. Mixing and homogenization in the early solar system: Clues from Sr, Ba, Nd and Sm isotopes in meteorites. Astrophys. J. 665, 874–883 (2007).

    Article  Google Scholar 

  8. Carlson, R. W., Boyet, M. & Horan, M. Chondrite barium, neodymium, and samarium isotopic heterogeneity and early Earth differentiation. Science 316, 1175–1178 (2007).

    Article  Google Scholar 

  9. Boyet, M. & Carlson, R. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005).

    Article  Google Scholar 

  10. Boyet, M. & Carlson, R. W. A new geochemical model for the Earth's mantle inferred from 146Sm–144Nd systematics. Earth Planet. Sci. Lett. 250, 254–268 (2006).

    Article  Google Scholar 

  11. Carlson, R. W. & Boyet, M. Composition of the Earth's interior: the importance of early events. Phil. Trans. R. Soc. A 4077–4103 (2008).

  12. Jackson, M. G. & Carlson, R. An ancient recipe for flood basalt genesis. Nature 476, 316–319 (2011).

    Article  Google Scholar 

  13. Andreasen, R., Sharma, M., Subbarao, K. V. & Viladkar, S. G. Where on Earth is the enriched Hadean reservoir? Earth Planet. Sci. Lett. 266, 14–28 (2008).

    Article  Google Scholar 

  14. Caro, G. & Bourdon, B. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle–crust system. Geochim. Cosmochim. Acta 74, 3333–3349 (2010).

    Article  Google Scholar 

  15. Jackson, M. G. et al. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–856 (2010).

    Article  Google Scholar 

  16. O'Neill, H. S. C. & Palme, H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. R. Soc. A 366, 4205–4238 (2008).

    Article  Google Scholar 

  17. Carlson, R. W. et al. How did early Earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).

    Article  Google Scholar 

  18. Caro, G., Bourdon, B., Halliday, A. N. & Quitte, G. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452, 336–339 (2008).

    Article  Google Scholar 

  19. Bonsor, A. et al. A collisional origin to Earth's non-chondritic composition? Icarus, 247, 291–300 (2015).

    Article  Google Scholar 

  20. Jackson, M. G. & Jellinek, A. M. Major and trace element composition of the high 3He/4He mantle: Implications for the composition of the bulk silicate Earth. Geochem. Geophys. Geosyst. 14, 2954–2976 (2013).

    Article  Google Scholar 

  21. Shirey, S. B., Kamber, B. S., Whitehouse, M. J., Mueller, P. A. & Basu, A. R. A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction. Geol. Soc. Am. Spec. Pap. 440, 1–29 (2008).

    Google Scholar 

  22. Huang, S., Jacobsen, S. B. & Mukhopadhyay, S. 147Sm-143Nd systematics of Earth are inconsistent with a superchondritic Sm/Nd ratio. Proc. Natl Acad. Sci. USA 110, 4929–4934 (2013).

    Article  Google Scholar 

  23. Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth Planet. Sci. Lett. 312, 267–279 (2011).

    Article  Google Scholar 

  24. Caro, G., Bourdon, B., Wood, B. J. & Corgne, A. Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436, 246–249 (2005).

    Article  Google Scholar 

  25. Šrámek, O. et al. Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle. Earth Planet. Sci. Lett. 361, 356–366 (2013).

    Article  Google Scholar 

  26. Javoy, M. & Kaminski, E. Earth's Uranium and Thorium content and geoneutrinos fluxes based on enstatite chondrites. Earth Planet. Sci. Lett. 407, 1–8 (2014).

    Article  Google Scholar 

  27. Labrosse, J. W., Hernlund, J. & Coltice, N. A Crystallizing dense magma ocean at the base of Earth's mantle. Nature 450, 866–869 (2007).

    Article  Google Scholar 

  28. Coltice, N., Moreira, M., Hernlund, J. & Labrosse, S. Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet. Sci. Lett. 308, 193–199 (2011).

    Article  Google Scholar 

  29. Hernlund, J. W. & McNamara, A. K. in Treatise on Geophysics (eds Bercovici, D. & Schubert, G.) Vol. 8, 461–519 (Elsevier, 2015).

    Book  Google Scholar 

  30. Willis, A. P., Sreenivasan, B. & Gubbins, D. Thermal core-mantle interaction: Exploring regimes for locked dynamo action. Phys. Earth Planet. Inter. 165, 83–92 (2007).

    Article  Google Scholar 

  31. Li, Z. X. & Zhong, S. Supercontinent–superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. Phys. Earth Planet. Inter. 176, 143–156 (2009).

    Article  Google Scholar 

  32. Olson, P. L., Coe, R. S., Driscoll, P. E., Glatzmaier, G. A. & Roberts, P. H. Geodynamo reversal frequency and heterogeneous core-mantle boundary heat flow. Phys. Earth Planet. Inter. 180, 66–79 (2010).

    Article  Google Scholar 

  33. Sreenivasan, B. & Jellinek, A. M. Did the Tharsis plume terminate the Martian dynamo? Earth Planet. Sci. Lett. 349–350, 209–217 (2012).

    Article  Google Scholar 

  34. Aubert, J., Tarduno, J. A. & Johnson, C. L. Observations and models of the long-term evolution of Earth's magnetic field. Space Sci. Rev. 155, 337–370 (2010).

    Article  Google Scholar 

  35. Jellinek, A. M. & Manga, M. Links between long-lived hotspots, mantle plumes, D", and plate tectonics. Revs. Geophys. 42, RG3002 (2004).

    Article  Google Scholar 

  36. Rizo, H. et al. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491, 96–100 (2013).

    Article  Google Scholar 

  37. Debaille V. et al. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013).

    Article  Google Scholar 

  38. Bennett, V. C., Brandon, A. D. & Nutman, A. P. Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics. Science 318, 1907–1910 (2007).

    Article  Google Scholar 

  39. Jackson, M. G. & Carlson, R. W. Homogeneous superchondritic 142Nd/144Nd in the mid-ocean ridge basalt and ocean island basalt mantle. Geochem. Geophys. Geosyst. 13, Q06011 (2012).

    Google Scholar 

  40. Murphy, D. T., Brandon, A. D., Debaille, V., Burgess, R. & Ballentine, C. 142Nd/144Nd reservoir in the deep mantle: Implications for the Nd isotope systematics of the Earth. Geochim. Cosmochim. Acta 74, 738–750 (2010).

    Article  Google Scholar 

  41. Caro, G., Bourdon, B., Birck, J. L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: Constraints on the early differentiation of the Earth's mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006).

    Article  Google Scholar 

  42. Touboul, M., Puchtel, I. S. & Walker, R. J. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520, 530–533 (2015).

    Article  Google Scholar 

  43. Kruijer, T. S., Kleine, T., Fischer-Gödde, M. & Spring, P. Lunar tungsten isotopic evidence for the late veneer. Nature 520, 534–537 (2015).

    Article  Google Scholar 

  44. Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).

    Article  Google Scholar 

  45. Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the Earth's mantle before the terminal bombardment. Nature 477, 195–198 (2011).

    Article  Google Scholar 

  46. Cuk, M. & Stewart, S. T. Making the moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    Article  Google Scholar 

  47. Wohlers, A. & Wood, B. J. A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd. Nature 520, 337–340 (2015).

    Article  Google Scholar 

  48. Korenaga, J. Initiation and evolution of plate tectonics on Earth: Theories and observations. Ann. Revs. Earth Planet. Sci. 41, 117–151 (2013).

    Article  Google Scholar 

  49. Driscoll, P. & Bercovici, D. On the thermal and magnetic histories of Earth and Venus: Influences of melting, radioactivity, and conductivity. Phy. Earth Planet. Int. 236, 36–51 (2014).

    Article  Google Scholar 

  50. Nimmo, F. in Evolution of the Earth (ed. Stevenson, D.) 217–241 (Treatise on Geophysics Vol. 9, Elsevier, 2007).

    Google Scholar 

  51. Höink, T., Jellinek, A. M. & Lenardic, A. Viscous coupling at the lithosphere asthenosphere boundary. Geochem. Geophys. Geosyst. 12, Q0AK02 (2011).

    Article  Google Scholar 

  52. Höink, T., Lenardic, A. & Jellinek, A. M. Earth's thermal evolution with multiple convection modes: A Monte-Carlo approach. Phys. Earth. Planet. Sci. Lett. 221, 22–26 (2013).

    Article  Google Scholar 

  53. Crowley, J. W. & O'Connell, R. J. An analytic model of convection in a system with layered viscosity and plates. Geophys. J. Int. 188, 61–78 (2012).

    Article  Google Scholar 

  54. Le Bars, M., Cébron, D. & Le Gal, P. Flows driven by libration, precession, and tides. Ann. Rev. Fluid Mech. 47, 163–193 (2015).

    Article  Google Scholar 

  55. Ozima, M. et al. Terrestrial nitrogen and noble gases in lunar soils. Nature 436, 655–659 (2005).

    Article  Google Scholar 

  56. Tarduno, J. A. et al. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327, 1238–1240 (2010).

    Article  Google Scholar 

  57. Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75, 183–229 (2013).

    Article  Google Scholar 

  58. Pierrehumbert, R. T. Principles of Planetary Climate (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  59. Berner, R. A. The carbon cycle and carbon dioxide over Phanerozoic time: the role of land plants. Phil. Trans. R. Soc. Lond. B 353, 75–82 (1998).

    Article  Google Scholar 

  60. Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. Planet. 106, 1373–1399 (2001).

    Article  Google Scholar 

  61. Hoffman, P. F. Pan-glacial—a third state in the climate system. Geology Today 25, 100–107 (2009).

    Article  Google Scholar 

  62. Feulner, G. The faint young Sun problem. Rev. Geophys. 50, RG2006 (2012).

    Article  Google Scholar 

  63. Lee, C. T. A., Shen, B., Slotnick, B. S., Liao, K., Dickens, G. R., Yokoyama, Y. & Tice, M. M. Continental arc–island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere 9, 21–36 (2013).

    Article  Google Scholar 

  64. O'Neill, C., Lenardic, A., Höink, T. & Coltice, N. in Comparative Climatology of Terrestrial Planets (eds Mackwell, S. J., Simon-Miller, A. A., Harder, J. W. & Bullock, M. A.) 473–486 (Univ. Arizona Press, 2014).

    Google Scholar 

  65. O'Neill, C., Jellinek, A. M. & Lenardic, A. Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth Planet. Sci. Lett. 261, 20–32 (2007).

    Article  Google Scholar 

  66. O'Neill, C., Lenardic, A., Moresi, L., Torsvik, T. H. & Lee, C.-T. A. Episodic Precambrian subduction. Earth Planet Sci. Lett. 262, 552–562 (2007).

    Article  Google Scholar 

  67. Weller, M., Lenardic, A. & O'Neill, C. The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets. Earth Planet. Sci. Lett. 420, 85–94 (2015).

    Article  Google Scholar 

  68. Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  69. Gomi, H. et al. The high conductivity of iron and thermal evolution of the Earth's core. Phys. Earth Planet. Int. 224, 88–103 (2013).

    Article  Google Scholar 

  70. Gannoun, A., Boyet, M., Rizo, H. & El Goresy, A. 146Sm–142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula. Proc. Natl Acad. Sci. USA 108, 7693–7697 (2011).

    Article  Google Scholar 

  71. Fitoussi, C. & Bourdon, B. Silicon isotope evidence against an enstatite chondrite Earth. Science 335, 1477–1480 (2012).

    Article  Google Scholar 

  72. Ranen, M. C. & Jacobsen, S. B. Barium isotopes in chondritic Meteorites: Implications for planetary reservoir models. Science 314, 809–812 (2006).

    Article  Google Scholar 

  73. Qin, L., Carlson, R. W. & Alexander, C. M. O'D. Correlated nucleosynthetic isotopic variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008. Geochim. Cosmochim. Acta 75, 7806–7828 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. O'Neill, J. Wade, R. Carlson, M. Boyet, Al Hofmann, N. Shimizu, W. McDonough, F. Horton, A. Lenardic, P. Hoffman, R. Pierrehumbert, and D. Archer for comments and engaging discussions. We acknowledge constructive reviews from W. White and S. Labrosse. M.G.J. acknowledges grants from NSF that funded this research: EAR-1348082, EAR-1347377, EAR-1145202 and OCE-1153894. A.M.J. acknowledges support from NSERC, the Canadian Institute for Advanced Research and NSF PHY11-25915.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding author

Correspondence to A. M. Jellinek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 634 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jellinek, A., Jackson, M. Connections between the bulk composition, geodynamics and habitability of Earth. Nature Geosci 8, 587–593 (2015). https://doi.org/10.1038/ngeo2488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing