Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High sea surface temperatures in tropical warm pools during the Pliocene

Abstract

The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3–4 °C. Yet, present reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea surface temperatures are controlled by a thermostat-like mechanism that maintained consistent temperatures. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca-, TEX86H- and -surface-temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warmth seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of mean annual ocean surface temperatures and locations of the sediment cores discussed in this paper30,48.
Figure 2: Pliocene to recent warm pool SST estimates.
Figure 3: Plio-Pleistocene warm pool evolution.

Similar content being viewed by others

References

  1. Pierrehumbert, R. Climate change and the tropical Pacific: The sleeping dragon wakes. Proc. Natl Acad. Sci. USA 97, 1355–1358 (2000).

    Article  Google Scholar 

  2. Wang, C. & Enfield, D. B. The tropical Western Hemisphere warm pool. Geophys. Res. Lett. 28, 1635–1638 (2001).

    Article  Google Scholar 

  3. Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010).

    Article  Google Scholar 

  4. Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009).

    Article  Google Scholar 

  5. Wara, M. W., Ravelo, A. C. & Delaney, M. L. Permanent El Niño-like conditions during the Pliocene warm period. Science 309, 758–761 (2005).

    Article  Google Scholar 

  6. Fedorov, A. et al. Patterns and mechanisms of early Pliocene warmth. Nature 496, 43–49 (2013).

    Article  Google Scholar 

  7. Ramanathan, V. & Collins, W. Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nino. Nature 351, 27–32 (1991).

    Article  Google Scholar 

  8. Newell, R. E. Climate and the Ocean: Measurements of changes in sea-surface temperature should permit us to forecast certain climatic changes several months ahead. Am. Sci. 67, 405–416 (1979).

    Google Scholar 

  9. Williams, I. N., Pierrehumbert, R. T. & Huber, M. Global warming, convective threshold and false thermostats. Geophys. Res. Lett. 36, L21805 (2009).

    Article  Google Scholar 

  10. Van Hooidonk, R. & Huber, M. Equivocal evidence for a thermostat and unusually low levels of coral bleaching in the Western Pacific Warm Pool. Geophys. Res. Lett. 36, L06705 (2009).

    Article  Google Scholar 

  11. Medina-Elizalde, M. & Lea, D. W. Late Pliocene equatorial Pacific. Paleoceanography 25, PA2208 (2010).

    Article  Google Scholar 

  12. Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of late quaternary equatorial Pacific Sea surface temperature variations. Science 289, 1719–1724 (2000).

    Article  Google Scholar 

  13. Rohling, E., Medina-Elizalde, M., Shepherd, J., Siddall, M. & Stanford, J. Sea surface and high-latitude temperature sensitivity to radiative forcing of climate over several glacial cycles. J. Clim. 25, 1635–1656 (2012).

    Article  Google Scholar 

  14. Dowsett, H. J. et al. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nature Clim. Change 2, 365–371 (2012).

    Article  Google Scholar 

  15. Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index UK’37 based on core-tops from the eastern South Atlantic and the global ocean (60 N-60 S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

    Article  Google Scholar 

  16. Medina-Elizalde, M., Lea, D. W. & Fantle, M. S. Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction. Earth Planet. Sci. Lett. 269, 585–595 (2008).

    Article  Google Scholar 

  17. Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C. & Cooper, M. J. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327, 1114–1117 (2010).

    Article  Google Scholar 

  18. Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A. & Demicco, R. V. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science 294, 1086–1088 (2001).

    Article  Google Scholar 

  19. Fantle, M. S. & DePaolo, D. J. Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years. Geochim. Cosmochim. Acta 70, 3883–3904 (2006).

    Article  Google Scholar 

  20. Stanley, S. M. & Hardie, L. A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 3–19 (1998).

    Article  Google Scholar 

  21. Rausch, S., Böhm, F., Bach, W., Klügel, A. & Eisenhauer, A. Calcium carbonate veins in ocean crust record a threefold increase of seawater Mg/Ca in the past 30 million years. Earth Planet. Sci. Lett. 362, 215–224 (2013).

    Article  Google Scholar 

  22. Dekens, P. S., Ravelo, A. C., McCarthy, M. D. & Edwards, C. A. A 5 million year comparison of Mg/Ca and alkenone paleothermometers. Geochem. Geophys. Geosyst. 9, Q10001 (2008).

    Article  Google Scholar 

  23. Li, L. et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth Planet. Sci. Lett. 309, 10–20 (2011).

    Article  Google Scholar 

  24. Groeneveld, J. Effect of the Pliocene Closure of the Panamanian Gateway on Caribbean and East Pacific Sea Surface Temperatures and Salinities by Applying Combined Mg/Ca and δ18O Measurements (5.6–2.2 Ma) PhD thesis, Univ. Kiel (2005)

  25. Seki, O. et al. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292, 201–211 (2010).

    Article  Google Scholar 

  26. Badger, M. P., Schmidt, D. N., Mackensen, A. & Pancost, R. D. High-resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3–2.8 Ma). Phil. Trans. R. Soc. A 371, 20130094 (2013).

    Article  Google Scholar 

  27. Seki, O. et al. Paleoceanographic changes in the Eastern Equatorial Pacific over the last 10 Myr. Paleoceanography 27, PA3224 (2012).

    Article  Google Scholar 

  28. Hollis, C. J. et al. Early Paleogene temperature history of the southwest Pacific Ocean: Reconciling proxies and models. Earth Planet. Sci. Lett. 349, 53–66 (2012).

    Article  Google Scholar 

  29. Wei, Y. et al. Spatial variations in archaeal lipids of surface water and core-top sediments in the South China Sea and their implications for paleoclimate studies. Appl. Environ. Microbiol. 77, 7479–7489 (2011).

    Article  Google Scholar 

  30. Locarnini, R. A. et al. in NOAA Atlas NESDIS 68 Vol. 1 (ed Levitus, S.) (US Government Printing Office, 2010).

    Google Scholar 

  31. Tian, J. et al. Late Pliocene monsoon linkage in the tropical South China Sea. Earth Planet. Sci. Lett. 252, 72–81 (2006).

    Article  Google Scholar 

  32. Schmidt, M. W., Vautravers, M. J. & Spero, H. J. Western Caribbean sea surface temperatures during the late Quaternary. Geochem. Geophys. Geosyst. 7, Q02P10 (2006).

    Article  Google Scholar 

  33. Wunsch, C. A perpetually running ENSO in the Pliocene? J. Clim. 22, 3506–3510 (2009).

    Article  Google Scholar 

  34. Fraile, I., Mulitza, S. & Schulz, M. Modeling planktonic foraminiferal seasonality: Implications for sea-surface temperature reconstructions. Mar. Micropaleontol. 72, 1–9 (2009).

    Article  Google Scholar 

  35. Hemleben, C., Spindler, M. & Erson, O. Modern Planktonic Foraminifera (Springer, 1989).

    Book  Google Scholar 

  36. Evans, D. & Müller, W. Deep time foraminifera Mg/Ca paleothermometry: Nonlinear correction for secular change in seawater Mg/Ca. Paleoceanography 27, PA4205 (2012).

    Article  Google Scholar 

  37. Horita, J., Zimmermann, H. & Holland, H. D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66, 3733–3756 (2002).

    Article  Google Scholar 

  38. Higgins, J. & Schrag, D. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids. Earth Planet. Sci. Lett. 357, 386–396 (2012).

    Article  Google Scholar 

  39. Wilkinson, B. H. & Algeo, T. J. Sedimentary carbonate record of calcium-magnesium cycling. Am. J. Sci. 289, 1158–1194 (1989).

    Article  Google Scholar 

  40. Köhler, P. et al. What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat. Sci. Rev. 29, 129–145 (2010).

    Article  Google Scholar 

  41. Rohling, E. J. et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508, 477–482 (2014).

    Article  Google Scholar 

  42. Dowsett, H. J. et al. Sea surface temperature of the mid-Piacenzian ocean: A data-model comparison. Sci. Rep. 3 (2013).

  43. Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002).

    Article  Google Scholar 

  44. Kim, J. H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74, 4639–4654 (2010).

    Article  Google Scholar 

  45. Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

    Article  Google Scholar 

  46. Yu, J., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 8, Q06016 (2007).

    Article  Google Scholar 

  47. Foster, G. L. Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266 (2008).

    Article  Google Scholar 

  48. Schlitzer, R. Interactive analysis and visualization of geoscience data with Ocean Data View. Comput. Geosci. 28, 1211–1218 (2002).

    Article  Google Scholar 

  49. Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A. C. High earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geosci. 3, 27–30 (2009).

    Article  Google Scholar 

  50. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a NERC studentship awarded to C.L.O’B. and a NERC standard grant NE/H006273/1 awarded to R.D.P. (Principal Investigator) and G.L.F. (Co-Investigator). R.D.P. also acknowledges the Royal Society Wolfson Research Merit Award. M.A.M-B. gratefully acknowledges the support of the European Community through a Marie Curie Intra-European Fellowship for Career Development. Samples were provided by the Integrated Ocean Drilling Program. We would like to thank K. Edgar for helpful discussions on diagenesis of foraminifera.

Author information

Authors and Affiliations

Authors

Contributions

C.L.O’B. collected all of the data (except where otherwise noted), interpreted results, and prepared the manuscript and figures. G.L.F. and R.D.P. supervised the project, and aided in interpretation, figure making and editing the manuscript. M.A.M-B. generated the G. ruber Mg/Ca data for Site 999. R.A. and G.L.F. generated the G. sacculifer Mg/Ca data for Site 999. J.W.B.R. aided in the collection of G. sacculifer Mg/Ca data for Site 1143, figure making and editing the manuscript.

Corresponding author

Correspondence to Charlotte L. O’Brien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, C., Foster, G., Martínez-Botí, M. et al. High sea surface temperatures in tropical warm pools during the Pliocene. Nature Geosci 7, 606–611 (2014). https://doi.org/10.1038/ngeo2194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2194

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology