Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation

Abstract

DAF-16, a forkhead transcription factor, is a key regulator of longevity, metabolism and dauer diapause in Caenorhabditis elegans. The precise mechanism by which DAF-16 regulates multiple functions, however, is poorly understood. Here, we used chromatin immunoprecipitation (ChIP) to identify direct targets of DAF-16. We cloned 103 target sequences containing consensus DAF-16 binding sites and selected 33 targets for further analysis. Expression of most of these genes is regulated in a DAF-16–dependent manner, and inactivation of more than half of these genes significantly altered DAF-16–dependent functions, including life span, fat storage and dauer formation. Our results show that the ChIP-based cloning strategy leads to greater enrichment for DAF-16 target genes than previous screening strategies. We also demonstrate that DAF-16 is recruited to multiple promoters to coordinate regulation of its downstream targets. The large number of target genes discovered provides insight into how DAF-16 controls diverse biological functions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatin immunoprecipitation (ChIP) to identify DAF-16 targets.
Figure 2: ChIP cloning identified 103 targets of DAF-16 representing various biological functions.
Figure 3: Phenotypic analyses of DAF-16 target genes.

Similar content being viewed by others

References

  1. Barbieri, M., Bonafe, M., Franceschi, C. & Paolisso, G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am. J. Physiol. Endocrinol. Metab. 285, E1064–E1071 (2003).

    Article  CAS  Google Scholar 

  2. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005).

    Article  CAS  Google Scholar 

  3. Oh, S.W. et al. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl. Acad. Sci. USA 102, 4494–4499 (2005).

    Article  CAS  Google Scholar 

  4. Murphy, C.T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283 (2003).

    Article  CAS  Google Scholar 

  5. McElwee, J., Bubb, K. & Thomas, J.H. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2, 111–121 (2003).

    Article  CAS  Google Scholar 

  6. Lee, S.S., Kennedy, S., Tolonen, A.C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644–647 (2003).

    Article  CAS  Google Scholar 

  7. Weinmann, A.S. Novel ChIP-based strategies to uncover transcription factor target genes in the immune system. Nat. Rev. Immunol. 4, 381–386 (2004).

    Article  CAS  Google Scholar 

  8. Raha, T., Cheng, S.W. & Green, M.R. HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol. 3, e44 (2005).

    Article  Google Scholar 

  9. Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634 (2000).

    Article  CAS  Google Scholar 

  10. Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13, 1385–1393 (1999).

    Article  CAS  Google Scholar 

  11. Lin, K., Dorman, J.B., Rodan, A. & Kenyon, C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).

    Article  CAS  Google Scholar 

  12. Libina, N., Berman, J.R. & Kenyon, C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489–502 (2003).

    Article  CAS  Google Scholar 

  13. Kimura, K.D., Tissenbaum, H.A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).

    Article  CAS  Google Scholar 

  14. Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat. Genet. 28, 139–145 (2001).

    Article  CAS  Google Scholar 

  15. Lee, R.Y., Hench, J. & Ruvkun, G. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr. Biol. 11, 1950–1957 (2001).

    Article  CAS  Google Scholar 

  16. Henderson, S.T. & Johnson, T.E. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 11, 1975–1980 (2001).

    Article  CAS  Google Scholar 

  17. De Belle, I., Wu, J.X., Sperandio, S., Mercola, D. & Adamson, E.D. In vivo cloning and characterization of a new growth suppressor protein TOE1 as a direct target gene of Egr1. J. Biol. Chem. 278, 14306–14312 (2003).

    Article  CAS  Google Scholar 

  18. Yanase, S., Yasuda, K. & Ishii, N. Adaptive responses to oxidative damage in three mutants of Caenorhabditis elegans (age-1, mev-1 and daf-16) that affect life span. Mech. Ageing Dev. 123, 1579–1587 (2002).

    Article  CAS  Google Scholar 

  19. Kops, G.J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316–321 (2002).

    Article  CAS  Google Scholar 

  20. Turner, A.J., Isaac, R.E. & Coates, D. The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23, 261–269 (2001).

    Article  CAS  Google Scholar 

  21. Kadowaki, T. & Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451 (2005).

    Article  CAS  Google Scholar 

  22. Oka, T., Yamamoto, R. & Futai, M. Multiple genes for vacuolar-type ATPase proteolipids in Caenorhabditis elegans. A new gene, vha-3, has a distinct cell-specific distribution. J. Biol. Chem. 273, 22570–22576 (1998).

    Article  CAS  Google Scholar 

  23. Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272 (2003).

    Article  CAS  Google Scholar 

  24. Gottlieb, S. & Ruvkun, G. daf-2, daf-16, and daf-23: Genetically interacting genes controlling dauer formation in C. elegans. Genetics 137, 107–120 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    Article  CAS  Google Scholar 

  26. Malone, E.A. & Thomas, J.H. A screen for non-conditional dauer-constitutive mutations in C. elegans. Genetics 136, 879–886 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamilton, B. et al. A systematic RNAi screen for longevity genes in C. elegans. Genes Dev. 19, 1544–1555 (2005).

    Article  CAS  Google Scholar 

  28. Conte, D. & Mello, C.C. RNA interference. in Current Protocols in Molecular Biology (eds. Ausubel, F.M. et al.) (Wiley, Hoboken, New Jersey, 2003).

    Google Scholar 

  29. Hosono, R., Mitsui, Y., Sato, Y., Aizawa, S. & Miwa, J. Life span of the wild and mutant nematode Caenorhabditis elegans. Effects of sex, sterilization, and temperature. Exp. Gerontol. 17, 163–172 (1982).

    Article  CAS  Google Scholar 

  30. Mukhopadhyay, A., Deplancke, B., Walhout, A.J. & Tissenbaum, H.A. C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metab. 2, 35–42 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Walhout, C. Mello, R. Davis, T. Duchaine, L. Maduira and M. Czech for their help and insights and members of the Tissenbaum lab and S. Evans for critical reading of the manuscript. Some of the strains were kindly provided by T. Stiernagle at the Caenorhabditis Genetics Center, which is funded by the US National Institutes of Health National Center for Research Resources. H.A.T. is a William Randolph Hearst Young Investigator. This project was funded in part by a Burroughs Wellcome Career Award in the Biomedical Sciences to H.A.T. and an endowment from the William Randolph Hearst Foundation and Worcester Foundation Scholar Award to H.A.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi A Tissenbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

A list of 103 target genes identified by ChIP cloning. (PDF 35 kb)

Supplementary Table 2

A list of DAF-16 downstream target genes identified by ChIP cloning in common with previous studies. (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wook Oh, S., Mukhopadhyay, A., Dixit, B. et al. Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 38, 251–257 (2006). https://doi.org/10.1038/ng1723

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing