Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epilepsy and brain abnormalities in mice lacking the Otx1 gene

Abstract

The morphogenesis of the brain and the differentiation of the neural structures are highly complex processes. A series of temporally and spatially regulated morphogenetic events gives rise to smaller areas that are phylogenetically, functionally and often morphogenetically different1,2. Candidate genes for positional information and differentiation during morphogenesis have been isolated2–5. Both in vivo inactivation in mice6–8 and impairment in human diseases5,9 revealed, that they are required in regional specification and/or correct cell-type induction. We have previously cloned and characterized the murine Otx1 gene3,10, which is related to orthodentide (otd), a homeobox-containing gene required for Drosophila head development11,12. Expression data during murine embryogenesis3,10 and postnatal brain development13 support the idea that Otx1 could be required for correct brain and sense organs development. To decipher its role in vivo we produced null mice by replacing Otd1 with the lacZ gene. Otx1−/− mice showed spontaneous epileptic behaviour and multiple abnormalities affecting mainly the telencephalic temporal and perirhinal areas, the hippocampus, the mesencephalon and the cerebellum, as well as the acoustic and visual sense organs. Our findings indicate that the Otx1 gene product is required for proper brain functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kuhlenbeck, H. The Central Nervous System. of Vertebrates. (S. Karger, Basel, (1994).

  2. Rubenstein, J.L.R., Martinez, S., Shimamura, K. & Puelles, L. The embryonic vertebrate forebrain: the prosomeric model. Science 266, 578–580 (1994).

    Article  CAS  Google Scholar 

  3. Simeone, A., Acampora, D., Gulisano, M., Stomaiuolo, A. & Boncinelli, E. Nested expression domains of four homeobox genes in developing rostral brain. Nature 358, 687–690 (1992).

    Article  CAS  Google Scholar 

  4. Davis, C.A. & Joyner, A.L. Expression patterns of the homeobox-containing gene En1 and En2 and the proto-oncogene int-1 during mouse development. Genes Dev. 2, 1736–1744 (1988).

    Article  CAS  Google Scholar 

  5. Gruss, P., Walther, C. Pax in development Cell 69, 719–722 (1992).

    Article  CAS  Google Scholar 

  6. Acampora, D. et al. Forebrain and midbrain regions are deleted in Otx2−/−mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121, 3279–3290 (1995).

    CAS  Google Scholar 

  7. McMahon, A.P. & Bradley, A., The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  Google Scholar 

  8. Joyner, A.L., Herrup, K., Auerbach, B.A., Davis, C.A. & Rossant, J. Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251, 1239–1243 (1991).

    Article  CAS  Google Scholar 

  9. Brunelli, S. et al. Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nature Genet. 12, 94–96 (1996).

    Article  CAS  Google Scholar 

  10. Simeone, A. et al. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 12, 2735–2747 (1993).

    Article  CAS  Google Scholar 

  11. Hirth, F., Therianos, S., Loop, T., Gehring, W.J., Reichert, H. & Furukubo-Tokunaga, K. Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Dmsophila . Neuron 15, 769–778 (1995).

    Article  CAS  Google Scholar 

  12. Royet, J. & Finkelstein, R. Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene. Development 121, 3561–3572 (1995).

    Google Scholar 

  13. Frantz, G.D., Weimann, J.M., Levin, M.E. & McConnell, S.K. Otxl and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J. Neurosci. 14, 5725–5740 (1994).

    Article  CAS  Google Scholar 

  14. Haddon, C.M. & Lewis, J.H. Hyaluronan as a propellent for epithelial movement: the development of semiciruclar canals in the inner ear of Xenopus Development 112, 541–550 1991).

    CAS  PubMed  Google Scholar 

  15. Kelly, J.P. Vestibula System. in PrinciplesofNeural Science.2nd edn. (eds Kandel, E.R. & Schwartz, J.H. ) 584 (Elsevier, New York, 1985).

  16. Dichter, M.A. The epilepsies and convulsive disorders in Herrinson's Principles of Internal Medicine. 12th edn. (eds Wilson, J.D. et al) 1968–1977 (McGraw-Hill, New York, 1991).

  17. Commission on: Classification and terminology of the international league against epilepsy. Epilepsia 30, 391–399 (1989).

  18. Meencke, H.J. & Janz, D. Neuropathological findings in primary generalized epilepsy: a study of eight cases. Epilepsia 25, 8–21 (1984).

    Article  CAS  Google Scholar 

  19. Raymond, A.A., Fish, D.R., Sisodiya, S.M., Alsanjari, N., Stevens, J.M. & Shorvon, S.D. Abnormalities of gyration, heterotopias, tuberons sclerosis, focal cortical dysplasia, microdysgenesis, dysembryoplastic neuroepithelial tumor and dysgenesis of the archicortex in epilepsy. Clinical, EEG and neuroimaging features in 100 adult patients. Brain 118, 629–660 (1995).

    Article  Google Scholar 

  20. Noebels, J.L. Targeting epilepsy genes. Neuron 16, 241–244 (1996).

    Article  CAS  Google Scholar 

  21. Ottman, R. et al. Localization of a gene for partial epilepsy to chromosome 10q. Nature Genet. 10, 56–60 (1995).

    Article  CAS  Google Scholar 

  22. Phillips, H.A. et al. Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q13.2. Nature Genet. 10, 117–118 (1995).

    Article  CAS  Google Scholar 

  23. Eksioglu, Y.Z. et al. Periventricular heterotopia: An X-linked dominant epilepsy locus causing aberrant cerebral cortical development. Neuron 16, 77–87 (1996).

    Article  CAS  Google Scholar 

  24. Matsumoto, M. et al. Ataxia and epileptic seizures in mice lacking type 1 inosrtol 1,4,5-triphosphate receptor . Nature 379, 168–171 (1996).

    Article  CAS  Google Scholar 

  25. Le Mouellic, H., Lallemand, Y. & Brulet, P. Targeted replacement of the homeobox gene Hox-3.1. by the Escherichia coli lacZ in mouse chimeric embryos. Proc. Natl. Acad. Sci. USA 87, 4712–4716 (1990).

    Article  CAS  Google Scholar 

  26. Robertson, E.J. Embryo-derived stem cell lines, in Teratocarcinomas and Embryonic Stem Cells. A Practical Approach, (ed. Robertson, E.J.) 71–112 (IRL, Oxford, (1987).

    Google Scholar 

  27. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo. A laboratory manual. 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, (1994).

    Google Scholar 

  28. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates. 2nd edn. (Academic Press, Australia, (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acampora, D., Mazan, S., Avantaggiato, V. et al. Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet 14, 218–222 (1996). https://doi.org/10.1038/ng1096-218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1096-218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing