Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus

Abstract

The IDDM2 locus encoding susceptibility to type 1 diabetes was mapped previously to a 4.1–kb region spanning the insulin gene and a minisatellite or variable number of tandem repeats (VNTR) locus on human chromosome 11p15.5. By ‘cross–match’ haplotype analysis and linkage disequilibrium mapping, we have mapped the mutation IDDM2 to within the VNTR itself. Other polymorphisms were systematically excluded as primary disease determinants. Transmission of IDDM2 may be influenced by parent–of–origin phenomena. Although we show that the insulin gene is expressed biallelically in the adult pancreas, we present preliminary evidence that the level of transcription in vivo is correlated with allelic variation within the VNTR. Allelic variation at VNTRs may play an important general role in human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Todd, J.A. The emperor's new genes: 1993 RD Lawrence lecture. Diabetic Med. 11, 6–16 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Karvonen, M., Tuomilehto, J., Libman, I. & LaPorte, R.A. A review of the recent epidemiologioal data on the worldwide incidence of type 1 (Insulin-dependent) diabetes mellitus. Diabetologia 36, 883–892 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Davies, J.L. et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Hashimoto, L. et al. Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature 371, 161–164 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Field, L.L., Tobias, R. & Magnus, T. A locus on chromosome 15q26 (IDDM3) produces susceptibility to insulin-dependent diabetes mellitus. Nature Genet. 8, 189–194 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Copeman, J.B. et al. Linkage disequilibrium mapping of a type 1 diabetes susceptibility gene (IDDM7) to chromosome 2q31 -q33. Nature Genet. 9, 80–85 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Sheehy, M.J. HLA and insulin dependent diabetes.Diabetes 41, 123–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Bell, G.I., Hortta, S. & Karam, J.H. Apolymorphlc locus near the human insulin gene is associated with Insulin-dependent diabetes mellitus. Diabetes 33, 176–83 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Juller, C. et al. lnsulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 354, 155–159 (1991).

    Article  Google Scholar 

  10. Bain, S.C. et al. Insulin gene region-encoded susceptibility to type 1 diabetes is not restricted to HLA-DR4-positive individuals. Nature Genet. 2, 212–215 34. (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Lucassen, A.M. et al. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 -Kb segment of DNA spanning the insulin gene and associated VNTR. Nature Genet. 4, 305–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Owerbach, D. & Gabbay, K.H. Localization of a type 1 diabete ssusceptibility locus to the variable tandem repeat region flanking the insulin gene. Diabetes 42, 1708–1714 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Pritchard, L.E. et al. Analysis of the CD3 region and type 1 diabetes: application of fluorescence-based technology to linkage disequilibrium mapping. Hum. molec Genet, 4, 197–202 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Bell, G.I., Selby, M.J. & Rutter, W.J. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295, 31–35 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Pugliese, A., Awdeh, Z.L., Alper, C.A., Jackson, R.A. & Eisenbarth, G.S. The paternally inherited insulin gene B allele (1, 428 Fokl site) confers protection from insulin-dependent diabetes in families. J. Autoimmun. 7, 687–694 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Ma Bui, M., Muir, A., Maclaren, N. & She, J. Linkage of the insulin gene (INS) with insulin-dependent (IDD) in Caucasians suggest a maternal imprinting effect. Diabetes 42 (suppl. 1), 63A (1993).

    Google Scholar 

  17. Heame, C.M., Ghosh, S. & Todd, J.A. Microsatellites for linkage analysis of genetic traits. Trends Genet. 8, 288–294 (1992).

    Article  Google Scholar 

  18. Cox, N.J., Bell, G.I. & Xiang, K. Linkage disequilibrium in the human insulin/insulin-like growth factor II region of human chromosome II. Am. J. hum. Genet. 43, 495–501 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. McGinnis, R.E. & Spielman, R.S. Linkage disequilibrium in the insulin gene region: size variation at the 5' flanking polymorphism and bimodality among “class I” alleles. Am. J. hum. Genet. 55, 526–532 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Oudet, C., Heilig, R., Hanauer, A. & Mandel, J.-L. Nonradioactive assay for new microsatellite polymorphisms at the 5′ end of the dystrophin gene, and estimation of intragenic recombination. Am. J. hum. Genet. 49, 311–319 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Oudet, C. et al. Linkage disequilibrium between the fragile X mutation and two closely linked CA repeats suggests that fragile X chromosomes are derived from a small number of founder chromosomes. Am. J. hum. Genet. 52, 297–304 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Renges, H.H., Peacock, R., Dunning, A.M., Talmud, P. & Humphries, S.E. Genetic relationship between the 3′-VNTR and diallelic apolipoprotein B gene polymorphisms. Ann. hum. Genet 56, 11–33 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Martinson, J.J., Boyce, A.J. & Clegg, J.B. VNTR alleles associated with the α-globin locus are haplotype and population related. Am. J. hum. Genet. 55, 513–525 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, Y., Goodyer, C.G., Deal, C. & Polychronakos, C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochemical and Biophysical Research Communications 197, 747–754 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Glannoukakis, N., Deal, C., Paquette, J., Goodyer, C.G. & Polychronakos, C. Parental genomic imprinting of the human IGF2 gene. Nature Genet. 4, 98–101 (1993).

    Article  Google Scholar 

  27. Keller, M.A. et al. Fluorescence-based RT PCR analysis: Determination of the ratio of soluble to membrane-bound forms of FcγRIIA transcripts in hematopoietic cell lines. PCR Meth. Appl. 3, 32–38 (1993).

    Article  CAS  Google Scholar 

  28. Falk, C.T. & Rubinstein, P. Haplotype relative risk: an easy reliable way to construct a proper control sample for risk calculations. Ann. hum. Genet. 51, 227–233 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Thomson, G., Robinson, W.P., Kuhner, M.K., Joe, S. & Klitz, W. HLA and insulin gene associations with IDDM. Genet. Epldemiol. 6, 155–160 (1989).

    Article  CAS  Google Scholar 

  30. Owerbach, D., Billesbolle, P., Poulsen, S. & Nerup, J. DNA insertion sequences near the insulin gene affect glucose regulation. Lancet 1, 880–883 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. Permutt, M.A., Rotwein, P., Andreone, T., Ward, W.K. & Porte, D. Islet β-cell function and polymorphism in the 5′-flanking region of the human insulin gene. Diabetes 34, 311–314 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Coccoza, S. et al. Polymorphism at the 5' end flanking region of the insulin gene is associated with reduced insulin secretion in healthy individuals. Euro. J. clin. Invest. 18, 582–586 (1988).

    Article  Google Scholar 

  33. Weaver, J.U., Kopelman, P.G. & Hitman, G.A. Central obesity and hyperinsulinaemia in women are associated with polymorphism in the 5' flanking region of the human insulin gene. Euro. J. clin. Invest. 22, 265–270 (1992).

    Article  CAS  Google Scholar 

  34. Lucassen, A.M. et al. Regulation of insulin gene expression by the IDDM associated, insulin locus haplotype. Hum. molec. Genet, (in the press)

  35. Walker, M.D., Edlund, T., Boulet, A.M. & Rutter, W.J. Cell-specific expression controlled by the 5′-flanking region of insulin and chymotrypsin genes. Nature 306, 557–561 (1983).

    Article  CAS  PubMed  Google Scholar 

  36. Kennedy, G.C., German, M.S. & Rutter, W.J. The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nature Genet. 9, 293–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet. 1, 40–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Giddings, S.J., King, C.D., Harman, K.W., Flood, J.F. & Carnaghi, L.R. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nature Genet. 6, 310–313 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Jinno, Y. et al. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nature Genet. 6, 305–309 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Vu, T.H. & Hoffman, A.R. Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature 371, 714–717 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Neumann, B., Kubicka, P. & Barlow, D.P. Characteristics of imprinted genes. Nature Genet. 9, 12–13 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Green, M. & Krontiris, T.G. Allelic variation of reporter gene activation by the HRAS1 minisatellite. Genomics 17, 429–434 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Krontiris, T.G., Devlin, B., Karp, D.D., Robert, N.J. & Risch, N. An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. N. Engl. J. Med. 329, 517–523 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Boam, D.S.W., Clark, A.R. & Docherty, K. Positive and negative regulation of the human insulin gene by multiple transacting factors. J. Biol. Chem. 265, 8285–8296 (1990).

    CAS  PubMed  Google Scholar 

  46. Hammond-Kosack, M.C.U., Dobrinski, B., Lurz, R., Docherty, K. & Kilpatrick, M.W. The human insulin gene linked polymorphic region exhibits an altered DNA structure. Nucleic Acids Res. 20, 231–236 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takeda, J., Ishii, S., Seino, Y., Imamato, F. & Imura, H. Negative regulation of human insulin gene expression by the 5′-flanking region in non-pancreatic cells. FEBS Lett. 247, 41–45 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Royce, N.J., Clarkson, R.E., Wong, Z. & Jeffreys, A. Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3, 352–360 (1988).

    Article  Google Scholar 

  49. Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K. & Mattick, J.S. Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reed, P.W. et al. Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nature Genet. 7, 390–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Spielman, R.S., McGinnis, R.E. & Ewens, W.J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. hum. Genet. 52, 506–516 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, S., Lucassen, A., Gough, S. et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 9, 284–292 (1995). https://doi.org/10.1038/ng0395-284

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0395-284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing