Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lin28 promotes transformation and is associated with advanced human malignancies

This article has been updated

Abstract

Multiple members of the let-7 family of miRNAs are often repressed in human cancers1,2, thereby promoting oncogenesis by derepressing targets such as HMGA2, K-Ras and c-Myc3,4. However, the mechanism by which let-7 miRNAs are coordinately repressed is unclear. The RNA-binding proteins LIN28 and LIN28B block let-7 precursors from being processed to mature miRNAs5,6,7,8, suggesting that their overexpression might promote malignancy through repression of let-7. Here we show that LIN28 and LIN28B are overexpressed in primary human tumors and human cancer cell lines (overall frequency 15%), and that overexpression is linked to repression of let-7 family miRNAs and derepression of let-7 targets. LIN28 and LIN28b facilitate cellular transformation in vitro, and overexpression is associated with advanced disease across multiple tumor types. Our work provides a mechanism for the coordinate repression of let-7 miRNAs observed in a subset of human cancers, and associates activation of LIN28 and LIN28B with poor clinical prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lin28 transforms NIH/3T3 cells.
Figure 2: LIN28B knockdown impairs growth and triggers differentiation of K562 cells.
Figure 3: LIN28B is associated with poor outcome in hepatocellular carcinoma.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 21 June 2009

    NOTE: In the version of this article initially published online, there was an error in the Acknowledgments. The fourth sentence should read as follows: “This work was supported by funds from the Canadian Cancer Society (P.H.S.).” The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  Google Scholar 

  2. Thomson, J.M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006).

    Article  CAS  Google Scholar 

  3. Kumar, M.S., Lu, J., Mercer, K.L., Golub, T.R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673–677 (2007).

    Article  CAS  Google Scholar 

  4. Kumar, M.S. et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl. Acad. Sci. USA 105, 3903–3908 (2008).

    Article  CAS  Google Scholar 

  5. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284 (2008).

    Article  CAS  Google Scholar 

  6. Newman, M.A., Thomson, J.M. & Hammond, S.M. Lin-28 interaction with the let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008).

    Article  CAS  Google Scholar 

  7. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).

    Article  CAS  Google Scholar 

  8. Viswanathan, S.R., Daley, G.Q. & Gregory, R.I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    Article  CAS  Google Scholar 

  9. Inamura, K. et al. let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung Cancer 58, 392–396 (2007).

    Article  Google Scholar 

  10. Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756 (2004).

    Article  CAS  Google Scholar 

  11. Gramantieri, L. et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 67, 6092–6099 (2007).

    Article  CAS  Google Scholar 

  12. Schultz, J., Lorenz, P., Gross, G., Ibrahim, S. & Kunz, M. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res. 18, 549–557 (2008).

    Article  CAS  Google Scholar 

  13. Shell, S. et al. Let-7 expression defines two differentiation stages of cancer. Proc. Natl. Acad. Sci. USA 104, 11400–11405 (2007).

    Article  CAS  Google Scholar 

  14. Esquela-Kerscher, A. et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7, 759–764 (2008).

    Article  CAS  Google Scholar 

  15. Lee, Y.S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007).

    Article  CAS  Google Scholar 

  16. Mayr, C., Hemann, M.T. & Bartel, D.P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576–1579 (2007).

    Article  CAS  Google Scholar 

  17. Zhang, L. et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA 105, 7004–7009 (2008).

    Article  CAS  Google Scholar 

  18. Nagayama, K. et al. Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosom. Cancer 46, 1000–1010 (2007).

    Article  CAS  Google Scholar 

  19. Yamada, H. et al. Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11–21 in human lung cancer. Genes Chromosom. Cancer 47, 810–818 (2008).

    Article  CAS  Google Scholar 

  20. Lu, L., Katsaros, D., Rigault de la Longrais, I., Sochirca, O. & Yu, H. Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res. 67, 10117–10122 (2007).

    Article  CAS  Google Scholar 

  21. Keath, E.J., Caimi, P.G. & Cole, M.D. Fibroblast lines expressing activated c-myc oncogenes are tumorigenic in nude mice and syngeneic animals. Cell 39, 339–348 (1984).

    Article  CAS  Google Scholar 

  22. Dangi-Garimella, S. et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28, 347–358 (2009).

    Article  CAS  Google Scholar 

  23. Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21310–21314 (2008).

    Article  CAS  Google Scholar 

  24. Engelman, A. & Rosenberg, N. bcr/abl and src but not myc and ras replace v-abl in lymphoid transformation. Mol. Cell. Biol. 10, 4365–4369 (1990).

    Article  CAS  Google Scholar 

  25. Meyer, B., Krisponeit, D., Junghanss, C., Escobar, H.M. & Bullerdiek, J. Quantitative expression analysis in peripheral blood of patients with chronic myeloid leukaemia: Correlation between HMGA2 expression and white blood cell count. Leuk. Lymphoma 48, 2008–2013 (2007).

    Article  CAS  Google Scholar 

  26. Bruecher-Encke, B., Griffin, J.D., Neel, B.G. & Lorenz, U. Role of the tyrosine phosphatase SHP-1 in K562 cell differentiation. Leukemia 15, 1424–1432 (2001).

    Article  CAS  Google Scholar 

  27. Chiang, D.Y. et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 68, 6779–6788 (2008).

    Article  CAS  Google Scholar 

  28. Hoshida, Y. et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N. Engl. J. Med. 359, 1995–2004 (2008).

    Article  CAS  Google Scholar 

  29. Korshunov, A., Sycheva, R., Golanov, A. & Pronin, I. Gains at the 1p36 chromosomal region are associated with symptomatic leptomeningeal dissemination of supratentorial glioblastomas. Am. J. Clin. Pathol. 127, 585–590 (2007).

    Article  CAS  Google Scholar 

  30. Dai, Z. et al. A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum. Mol. Genet. 12, 791–801 (2003).

    Article  CAS  Google Scholar 

  31. Summersgill, B. et al. Molecular cytogenetic analysis of adult testicular germ cell tumours and identification of regions of consensus copy number change. Br. J. Cancer 77, 305–313 (1998).

    Article  CAS  Google Scholar 

  32. Chang, T.C. et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc. Natl. Acad. Sci. USA 106, 3384–3389 (2009).

    Article  CAS  Google Scholar 

  33. Anglesio, M.S. et al. Differential expression of a novel ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic Wilms' tumor versus normal kidney. Hum. Mol. Genet. 13, 2061–2074 (2004).

    Article  CAS  Google Scholar 

  34. Bruce, C.K., Howard, P., Nowak, N.J. & Hoban, P.R. Molecular analysis of region t(5;6)(q21;q21) in Wilms tumor. Cancer Genet. Cytogenet. 141, 106–113 (2003).

    Article  CAS  Google Scholar 

  35. Fernandez, C.V., Lestou, V.S., Wildish, J., Lee, C.L.Y. & Sorensen, P.H.B. Detection of a novel t(6;15)(q21;q21) in a pediatric Wilms tumor. Cancer Genet. Cytogenet. 129, 165–167 (2001).

    Article  CAS  Google Scholar 

  36. Hoban, P.R. et al. Physical localisation of the breakpoints of a constitutional translocation t(5;6)(q21;q21) in a child with bilateral Wilms' tumour. J. Med. Genet. 34, 343–345 (1997).

    Article  CAS  Google Scholar 

  37. Zhang, L. et al. The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. Nat. Med. 13, 1060–1069 (2007).

    Article  CAS  Google Scholar 

  38. Richards, M., Tan, S.P., Tan, J.H., Chan, W.K. & Bongso, A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22, 51–64 (2004).

    Article  CAS  Google Scholar 

  39. Eckfeldt, C.E. et al. Functional analysis of human hematopoietic stem cell gene expression using zebrafish. PLoS Biol. 3, e254 (2005).

    Article  Google Scholar 

  40. Yang, D.H. & Moss, E.G. Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expr. Patterns 3, 719–726 (2003).

    Article  CAS  Google Scholar 

  41. Bell, D.A. Origins and molecular pathology of ovarian cancer. Mod. Pathol. 18, S19–S32 (2005).

    Article  CAS  Google Scholar 

  42. Lee, J.S. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12, 410–416 (2006).

    Article  CAS  Google Scholar 

  43. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  44. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  Google Scholar 

  45. Gidekel, S., Pizov, G., Bergman, Y. & Pikarsky, E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4, 361–370 (2003).

    Article  CAS  Google Scholar 

  46. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  Google Scholar 

  47. Ben Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008).

    Article  CAS  Google Scholar 

  48. Hartwell, K.A. et al. The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc. Natl. Acad. Sci. USA 103, 18969–18974 (2006).

    Article  CAS  Google Scholar 

  49. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  Google Scholar 

  50. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    Article  CAS  Google Scholar 

  51. Llovet, J.M., Burroughs, A. & Bruix, J. Hepatocellular carcinoma. Lancet 362, 1907–1917 (2003).

    Article  Google Scholar 

  52. Azam, M., Seeliger, M.A., Gray, N.S., Kuriyan, J. & Daley, G.Q. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat. Struct. Mol. Biol. 15, 1109–1118 (2008).

    Article  CAS  Google Scholar 

  53. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

    Article  CAS  Google Scholar 

  54. Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  Google Scholar 

  55. Lee, J.C. et al. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Med. 3, e485 (2006).

    Article  Google Scholar 

  56. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  Google Scholar 

  57. Hupe, P., Stransky, N., Thiery, J.P., Radvanyi, F. & Barillot, E. Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20, 3413–3422 (2004).

    Article  CAS  Google Scholar 

  58. Mullighan, C.G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Kim (Children's Hospital Boston) for providing LKR cells and the MGH Gyn Tissue Repository for ovarian tissue samples. Thanks to D. Fink and N. Melnyk for technical assistance. This work was partially supported by grants from the US National Institute of Diabetes and Digestive and Kidney Diseases (J.M.L.; 1R01DK076986-01), the Samuel Waxman Cancer Research Foundation (J.M.L.), the Spanish National Health Institute (J.M.L.; SAF-2007-61898). This work was supported by funds from the Canadian Cancer Society (P.H.S.). This work was supported by grants from the NIH, the NIH Director's Pioneer Award of the NIH Roadmap for Medical Research, Clinical Scientist Awards in Translational Research from the Burroughs Wellcome Fund and the Leukemia and Lymphoma Society (G.Q.D.), and the Howard Hughes Medical Institute (G.Q.D.). J.T.P. was supported by a Hematology Training Grant from the National Institutes of Health (NIH T32-HL 66987).

Author information

Authors and Affiliations

Authors

Contributions

S.R.V. and G.Q.D. conceived experiments and wrote the manuscript. S.R.V., J.T.P., W.E., Y.H., T.N., S.T., M.O., J.L., L.A.P., V.L.L., S.P.S., P.S.T., C.H.M., R.B., M.A., J.T., M.M., T.P.H., J.M.L., J.R., C.G.M., T.R.G. and P.H.S. executed experiments, contributed reagents, analyzed array data and edited the manuscript.

Corresponding author

Correspondence to George Q Daley.

Ethics declarations

Competing interests

The subject matter of this report is the basis of a patent application.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–6 (PDF 1862 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanathan, S., Powers, J., Einhorn, W. et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41, 843–848 (2009). https://doi.org/10.1038/ng.392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing