Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Temperature-dependent Mobility of Concanavalin a Sites on Tumour Cell Surfaces

Abstract

AUB and his colleagues found that a contaminant in wheat germ lipase preparations agglutinated certain tumour cells, but not normal cells1,2. The agglutinating molecule was later purified by Burger and Goldberg3 and characterized as a plant lectin (wheat germ agglutinin) that binds to specific terminal oligosaccharide residues containing N-acetyl-D-glucosamine. The ability to agglutinate tumour cells at concentrations which do not affect normal cells has been found for several other lectins with different saccharide binding specificities: concanavalin A4,5 (Con A), soy bean agglutinin6, Ricinus communis agglutinin7, Pisum sativum agglutinin8 and others9. Burger proposed that the difference in agglutinability of tumour cells was a consequence of the exposure of “cryptic” lectin binding sites during transformation3,10. Several investigators have found, however, that there is essentially no difference in the number of lectin sites on normal and transformed cells11–15. Another explanation for the differential agglutinability of tumour cells was that the distribution of lectin sites at the cell surface could change to a topographic (“clustered”) state which is more favourable for cell agglutination16–18. Experimental evidence for a topographic difference in the distribution of Con A sites on transformed, compared with normal, fibroblast cell surfaces has been obtained using ferritin-conjugated Con A16 and peroxidase-bound Con A19,20. In these studies mounted cell membranes16 or intact cells19,20 were labelled at room temperature with the Con A reagents. The mounted cell membranes were observed directly to obtain the topographic distribution of ferritin-Con A sites16; or the intact cells19,20 were treated with Con A and peroxidase, fixed, dehydrated and embedded in plastic for thin section observation of an electron-dense peroxidase product at the cell surface19,20. By either method the Con A membrane sites on tumour cells were distributed in a more clustered state than in normal cells16,19,20. The clustered Con A sites seem to be involved in cell agglutination, because trypsinized normal cells (which are agglutinable) also show a similar reorganization of Con A sites18. When trypsinized 3T3 cells were agglutinated with ferritin-Con A and the cell aggregates removed, fixed, embedded in ‘Epson’ 812, sectioned and their cell membranes examined, the ferritin-Con A was found in clusters at the sites of contact between the agglutinated cells18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Aub, J. C., Sanford, B. H., and Cote, M. N., Proc. US Nat. Acad. Sci., 50, 613 (1963).

    Article  CAS  Google Scholar 

  2. Aub, J. C., Sanford, B. H., and Cote, M. N., Proc. US Nat. Acad. Sci., 54, 396 (1965).

    Article  CAS  Google Scholar 

  3. Burger, M. M., and Goldberg, A. R., Proc. US Nat. Acad. Sci., 57, 359 (1967).

    Article  CAS  Google Scholar 

  4. Inbar, M., and Sachs, L., Nature, 233, 710 (1969).

    Article  Google Scholar 

  5. Inbar, M., and Sachs, L., Proc. US Nat. Acad. Sci., 63, 1418 (1969).

    Article  CAS  Google Scholar 

  6. Sela, B., Lis, H., Sharon, N., and Sachs, L., J. Membrane Biol., 3, 267 (1970).

    Article  CAS  Google Scholar 

  7. Nicolson, G. L., and Blaustein, J., Biochim. Biophys. Acta, 266, 543 (1972).

    Article  CAS  Google Scholar 

  8. Vesely, P., Entlicher, G., and Kocourek, J., Experientia, 28, 1085 (1972).

    Article  CAS  Google Scholar 

  9. Tomita, M., Osawa, T., Sakurai, Y., and Ukita, T., Inter. J. Cancer, 6, 283 (1970).

    Article  CAS  Google Scholar 

  10. Burger, M. M., Proc. US Nat. Acad. Sci., 62, 994 (1969).

    Article  CAS  Google Scholar 

  11. Cline, M. J., and Livingston, D. C., Nature New Biology, 232, 155 (1971).

    Article  CAS  Google Scholar 

  12. Ozanne, B., and Sambrook, J., Nature New Biology, 232, 156 (1971).

    Article  CAS  Google Scholar 

  13. Arndt-Jovin, D. J., and Berg, P., J. Virology, 8, 716 (1971).

    CAS  PubMed  Google Scholar 

  14. Sela, B., Lis, H., Sharon, N., and Sachs, L., Biochim. Biophys. Acta, 249, 546 (1971).

    Google Scholar 

  15. Nicolson, G. L., J. Nat. Inst. (in the press).

  16. Nicolson, G. L., Nature New Biology, 233, 244 (1971).

    Article  CAS  Google Scholar 

  17. Singer, S. J., and Nicolson, G. L., Science, NY, 175, 720 (1972).

    Article  CAS  Google Scholar 

  18. Nicolson, G. L., Nature New Biology, 239, 193 (1972).

    Article  CAS  Google Scholar 

  19. Martinex-Palomo, A., Wicker, R., and Bernhard, W., Inter. J. Cancer, 9, 676 (1972).

    Article  Google Scholar 

  20. Bretten, R., Wicker, R., and Bernhard, W., Inter. J. Cancer, 10, 397 (1972).

    Article  Google Scholar 

  21. Inbar, M., Ben-Bassat, H., and Sachs, L., Proc. US Nat. Acad. Sci., 68, 2748 (1971).

    Article  CAS  Google Scholar 

  22. Frye, L. D., and Edidin, M., J. Cell. Sci., 7, 319 (1970).

    CAS  PubMed  Google Scholar 

  23. Taylor, R., Duffus, P., Raff, M., and De Petris, S., Nature New Biology, 233, 225 (1971).

    Article  CAS  Google Scholar 

  24. Davis, W., Science, 175, 1006 (1972).

    Article  CAS  Google Scholar 

  25. Edidin, M., and Weiss, L., Proc. US Nat. Acad. Sci., 69, 2456 (1972).

    Article  CAS  Google Scholar 

  26. Yahara, I., and Edelman, G. M., Proc. US Nat. Acad. Sci, 69, 806 (1972).

    Article  Google Scholar 

  27. Kourilsky, F. M., Silvestre, D., Neauport-Sautes, C., Loosfelt, Y., and Dausset, J., Eur. J. Immunol., 2, 249 (1972).

    Article  CAS  Google Scholar 

  28. Unanue, E. R., Perkins, W. D., and Karnovsky, M. J., J. Exp. Med., 136, 885 (1972).

    Article  CAS  Google Scholar 

  29. Comoglio, P. M., and Guglielmone, R., FEBS Lett., 27, 256 (1972).

    Article  CAS  Google Scholar 

  30. Vogt, M., and Dulbecco, R., Proc. US Nat. Acad. Sci., 49, 171 (1963).

    Article  CAS  Google Scholar 

  31. Agrawal, B. B. L., and Goldstein, I. J., Biochim. Biophys. Acta, 147, 262 (1967).

    Article  CAS  Google Scholar 

  32. Fleishman, J., Pain, R., and Porter, R., Arch. Biochem., Suppl., 1, 174 (1962).

    Google Scholar 

  33. Rinderknecht, H., Nature, 193, 167 (1962).

    Article  CAS  Google Scholar 

  34. Mallucci, L., Nature New Biology, 233, 241 (1971).

    Article  CAS  Google Scholar 

  35. Comoglio, P. M., Guglielmone, R., and Forni, G., Giron. Acad. Med., 134, 1 (1971).

    Google Scholar 

  36. Shoham, J., and Sachs, L., Proc. US Nat. Acad. Sci., 69, 2479 (1972).

    Article  CAS  Google Scholar 

  37. Fox, T. O., Sheppard, J. R., and Burger, M. M., Proc. US Nat. Acad. Sci., 68, 244 (1971).

    Article  CAS  Google Scholar 

  38. Karnovsky, M. J., Unanue, E. R., and Leventhal, M., J. Exp. Med., 136, 907 (1972).

    Article  CAS  Google Scholar 

  39. Smith, S., and Revel, J. P., Devel. Biol., 27, 434 (1972).

    Article  CAS  Google Scholar 

  40. Rosenblith, J. Z., Yin, H. H., Ukena, T. E., Berlin, R. D., and Karnovsky, M. J., Fedn. Proc. (in the press).

  41. Hubbel, W. L., and McConnell, H. M., Proc. US Nat. Acad. Sci., 61, 12 (1968).

    Article  Google Scholar 

  42. Kornberg, R. D., and McConnell, H. M., Proc. US Nat. Acad. Sci., 68, 2564 (1971).

    Article  CAS  Google Scholar 

  43. Glaser, M., Simkins, H., Singer, S. J., Sheetz, M., and Chan, S. I., Proc. US Nat. Acad. Sci., 65, 721 (1970).

    Article  CAS  Google Scholar 

  44. Stein, J. M., Tourtellotte, M. E., Reinert, J. C., McElhaney, R. N., and Rader, R. L., Proc. US Nat. Acad. Sci., 63, 104 (1969).

    Article  Google Scholar 

  45. Pinto da Silva, P., J. Cell. Biol., 53, 777 (1972).

    Article  CAS  Google Scholar 

  46. Blasie, J. K., and Worthington, C. R., J. Mol. Biol., 39, 417 (1969).

    Article  CAS  Google Scholar 

  47. Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, R. E., Proc. US Nat. Acad. Sci., 69, 1445 (1972).

    Article  CAS  Google Scholar 

  48. Yin, H. H., Ukena, T. E., and Berlin, R. D., Science, 178, 867 (1972).

    Article  CAS  Google Scholar 

  49. Inbar, M., Ben-Bassat, H., Sachs, L., Huet, C., and Oseroff, A. R., Biochim. Biophys. Acta (in the press).

  50. Rosenblith, J. Z., Ukena, T. E., Yin, H. H., Berlin, R. D., and Karnovsky, M. J., Proc. US Nat. Acad. Sci. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NICOLSON, G. Temperature-dependent Mobility of Concanavalin a Sites on Tumour Cell Surfaces. Nature New Biology 243, 218–220 (1973). https://doi.org/10.1038/newbio243218a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/newbio243218a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing