Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amyloid-β forms fibrils by nucleated conformational conversion of oligomers

Abstract

Amyloid-β amyloidogenesis is reported to occur via a nucleated polymerization mechanism. If this is true, the energetically unfavorable oligomeric nucleus should be very hard to detect. However, many laboratories have detected early nonfibrillar amyloid-β oligomers without observing amyloid fibrils, suggesting that a mechanistic revision may be needed. Here we introduce Cys-Cys-amyloid-β1–40, which cannot bind to the latent fluorophore FlAsH as a monomer, but can bind FlAsH as an nonfibrillar oligomer or as a fibril, rendering the conjugates fluorescent. Through FlAsH monitoring of Cys-Cys-amyloid-β1–40 aggregation, we found that amyloid-β1–40 rapidly and efficiently forms spherical oligomers in vitro (85% yield) that are kinetically competent to slowly convert to amyloid fibrils by a nucleated conformational conversion mechanism. This methodology was used to show that plasmalogen ethanolamine vesicles eliminate the proteotoxicity-associated oligomerization phase of amyloid-β amyloidogenesis while allowing fibril formation, rationalizing how low concentrations of plasmalogen ethanolamine in the brain are epidemiologically linked to Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of Cys-Cys-amyloid-β1–40 fibrils using FlAsH-EDT2.
Figure 2: Monitoring Aβ1–40 aggregation by FlAsH, ThT and ThT-to-FlAsH fluorescence resonance energy transfer (FRET).
Figure 3: CC-Aβ1–40 aggregates by a nucleated conformational conversion mechanism.
Figure 4: Familial Alzheimer's disease mutant Aβ1–40 aggregation time courses.
Figure 5: Effect of LUVs comprising various lipids on Aβ aggregation.
Figure 6: Free-energy diagram for an Aβ1–40 aggregation reaction proceeding by a nucleated conformational conversion mechanism.

Similar content being viewed by others

References

  1. Selkoe, D.J. The molecular pathology of Alzheimer's disease. Neuron 6, 487–498 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Hardy, J. The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc. Natl. Acad. Sci. USA 94, 2095–2097 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Holtzman, D.M., Morris, J.C. & Goate, A.M. Alzheimer's disease: the challenge of the second century. Sci. Transl. Med. 3, 77sr71 (2011).

    Google Scholar 

  4. Klein, W.L., Krafft, G.A. & Finch, C.E. Targeting small Aβ oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci. 24, 219–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Walsh, D.M. & Selkoe, D.J. Aβ oligomers—a decade of discovery. J. Neurochem. 101, 1172–1184 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Shankar, G.M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Garzon-Rodriguez, W., Sepulveda-Becerra, M., Milton, S. & Glabe, C.G. Soluble amyloid Aβ-(1–40) exists as a stable dimer at low concentrations. J. Biol. Chem. 272, 21037–21044 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Ono, K., Condron, M.M. & Teplow, D.B. Structure-neurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl. Acad. Sci. USA 106, 14745–14750 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Bernstein, S.L. et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nat. Chem. 1, 326–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lesné, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  PubMed  Google Scholar 

  12. Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Lomakin, A., Teplow, D.B., Kirschner, D.A. & Benedek, G.B. Kinetic theory of fibrillogenesis of amyloid-β protein. Proc. Natl. Acad. Sci. USA 94, 7942–7947 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Sabaté, R. & Estelrich, J. Evidence of the existence of micelles in the fibrillogenesis of β-amyloid peptide. J. Phys. Chem. B 109, 11027–11032 (2005).

    Article  PubMed  Google Scholar 

  15. Tomiyama, T. et al. A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J. Neurosci. 30, 4845–4856 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Harper, J.D. & Lansbury, P.T. Jr. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Jarrett, J.T. & Lansbury, P.T. Jr. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Roychaudhuri, R., Yang, M., Hoshi, M.M. & Teplow, D.B. Amyloid β-protein assembly and Alzheimer disease. J. Biol. Chem. 284, 4749–4753 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Wetzel, R. Kinetics and thermodynamics of amyloid fibril assembly. Acc. Chem. Res. 39, 671–679 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. LeVine, H. III. Thioflavin T interaction with synthetic Alzheimer's disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2, 404–410 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bieschke, J., Zhang, Q., Powers, E.T., Lerner, R.A. & Kelly, J.W. Oxidative metabolites accelerate Alzheimer's amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry 44, 4977–4983 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Coleman, B.M. et al. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence. Biochem. Biophys. Res. Commun. 380, 564–568 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Luedtke, N.W., Dexter, R.J., Fried, D.B. & Schepartz, A. Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH. Nat. Chem. Biol. 3, 779–784 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krishnan, B. & Gierasch, L.M. Cross-strand split tetra-Cys motifs as structure sensors in a β-sheet protein. Chem. Biol. 15, 1104–1115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goodman, J.L., Fried, D.B. & Schepartz, A. Bipartite tetracysteine display requires site flexibility for ReAsH coordination. ChemBioChem 10, 1644–1647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Webber, T.M. et al. Conformational detection of p53's oligomeric state by FlAsH fluorescence. Biochem. Biophys. Res. Commun. 384, 66–70 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petkova, A.T. et al. A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA 99, 16742–16747 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Lührs, T. et al. 3D structure of Alzheimer's amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. USA 102, 17342–17347 (2005).

    Article  PubMed  Google Scholar 

  31. Porat, Y., Abramowitz, A. & Gazit, E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, F. et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280, 5892–5901 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Maezawa, I. et al. Congo red and thioflavin-T analogs detect Aβ oligomers. J. Neurochem. 104, 457–468 (2008).

    CAS  PubMed  Google Scholar 

  34. Serio, T.R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Thakur, A.K. et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol. 16, 380–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei, L. et al. The molecular basis of distinct aggregation pathways of islet amyloid polypeptide. J. Biol. Chem. 286, 6291–6300 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Chimon, S. et al. Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid. Nat. Struct. Mol. Biol. 14, 1157–1164 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Ahmed, M. et al. Structural conversion of neurotoxic amyloid-β (1–42) oligomers to fibrils. Nat. Struct. Mol. Biol. 17, 561–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nat. Neurosci. 4, 887–893 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Lashuel, H.A. et al. Mixtures of wild-type and a pathogenic (E22G) form of Aβ40 in vitro accumulate protofibrils, including amyloid pores. J. Mol. Biol. 332, 795–808 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Tomiyama, T. et al. A new amyloid β variant favoring oligomerization in Alzheimer's-type dementia. Ann. Neurol. 63, 377–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Cloe, A.L., Orgel, J.P., Sachleben, J.R., Tycko, R. & Meredith, S.C. The Japanese mutant Aβ(ΔE22-Aβ1–39) forms fibrils instantaneously, with low-thioflavin T fluorescence: seeding of wild-type Aβ1–40 into atypical fibrils by ΔE22-Aβ1–39 . Biochemistry 50, 2026–2039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wells, K., Farooqui, A.A., Liss, L. & Horrocks, L.A. Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20, 1329–1333 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Goodenowe, D.B. et al. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer's disease and dementia. J. Lipid Res. 48, 2485–2498 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Han, X., Holtzman, D.M. & McKeel, D.W. Jr. Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J. Neurochem. 77, 1168–1180 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Martins, I.C. et al. Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J. 27, 224–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, S., Nollen, E.A., Kitagawa, K., Bindokas, V.P. & Morimoto, R.I. Polyglutamine protein aggregates are dynamic. Nat. Cell Biol. 4, 826–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Outeiro, T.F. et al. Formation of toxic oligomeric α-synuclein species in living cells. PLoS One 3, e1867 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yushchenko, D.A., Fauerbach, J.A., Thirunavukkuarasu, S., Jares-Erijman, E.A. & Jovin, T.M. Fluorescent ratiometric MFC probe sensitive to early stages of α-synuclein aggregation. J. Am. Chem. Soc. 132, 7860–7861 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Roberti, M.J., Bertoncini, C.W., Klement, R., Jares-Erijman, E.A. & Jovin, T.M. Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein. Nat. Methods 4, 345–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Sunde, M. & Blake, C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem. 50, 123–159 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the US National Institutes of Health (NS050636), The Skaggs Institute for Chemical Biology and the Lita Annenberg Hazen Foundation for financial support and C. Fearns for critical feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed and carried out experiments, analyzed data and wrote the paper. E.K.C. carried out experiments and wrote the paper. E.T.P. and J.W.K. designed experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Jeffery W Kelly.

Ethics declarations

Competing interests

J.W.K. is a cofounder, paid consultant and a shareholder of FoldRx Pharmaceuticals (Pfizer) and Proteostasis Therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Culyba, E., Powers, E. et al. Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nat Chem Biol 7, 602–609 (2011). https://doi.org/10.1038/nchembio.624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing