Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A universal code for RNA recognition by PUF proteins

Abstract

The design of proteins that can bind any RNA sequence of interest has many potential biological and medical applications. Here we have expanded the recognition of Pumilio and FBF homology protein (PUF) repeats beyond adenine, guanine and uracil and evolved them to specifically bind cytosine. These repeat sequences can be used to create PUF domains capable of selectively binding RNA targets of diverse sequence and structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection and characterization of PUF repeats that can specifically recognize cytosine.
Figure 2: General applicability of PUF domains in RNA recognition.

Similar content being viewed by others

References

  1. Glisovic, T., Bachorik, J.L., Yong, J. & Dreyfuss, G. FEBS Lett. 582, 1977–1986 (2008).

    Article  CAS  Google Scholar 

  2. St. Johnston, D. Nat. Rev. Mol. Cell Biol. 6, 363–375 (2005).

    Article  CAS  Google Scholar 

  3. Auweter, S.D., Oberstrass, F.C. & Allain, F.H. Nucleic Acids Res. 34, 4943–4959 (2006).

    Article  CAS  Google Scholar 

  4. Lunde, B.M., Moore, C. & Varani, G. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    Article  CAS  Google Scholar 

  5. Carthew, R.W. & Sontheimer, E.J. Cell 136, 642–655 (2009).

    Article  CAS  Google Scholar 

  6. Quenault, T., Lithgow, T. & Traven, A. Trends Cell Biol. 21, 104–112 (2011).

    Article  CAS  Google Scholar 

  7. Wang, X., McLachlan, J., Zamore, P.D. & Hall, T.M. Cell 110, 501–512 (2002).

    Article  CAS  Google Scholar 

  8. Wang, X., Zamore, P.D. & Hall, T.M. Mol. Cell 7, 855–865 (2001).

    Article  CAS  Google Scholar 

  9. Edwards, T.A., Pyle, S.E., Wharton, R.P. & Aggarwal, A.K. Cell 105, 281–289 (2001).

    Article  CAS  Google Scholar 

  10. Zamore, P.D., Williamson, J.R. & Lehmann, R. RNA 3, 1421–1433 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheong, C.G. & Hall, T.M. Proc. Natl. Acad. Sci. USA 103, 13635–13639 (2006).

    Article  CAS  Google Scholar 

  12. Wang, Y., Cheong, C.G., Hall, T.M. & Wang, Z. Nat. Methods 6, 825–830 (2009).

    Article  CAS  Google Scholar 

  13. Tilsner, J. et al. Plant J. 57, 758–770 (2009).

    Article  CAS  Google Scholar 

  14. Ozawa, T., Natori, Y., Sato, M. & Umezawa, Y. Nat. Methods 4, 413–419 (2007).

    Article  CAS  Google Scholar 

  15. SenGupta, D.J. et al. Proc. Natl. Acad. Sci. USA 93, 8496–8501 (1996).

    Article  CAS  Google Scholar 

  16. Hook, B., Bernstein, D., Zhang, B. & Wickens, M. RNA 11, 227–233 (2005).

    Article  CAS  Google Scholar 

  17. Wang, Y., Opperman, L., Wickens, M. & Hall, T.M. Proc. Natl. Acad. Sci. USA 106, 20186–20191 (2009).

    Article  CAS  Google Scholar 

  18. Gupta, Y.K., Nair, D.T., Wharton, R.P. & Aggarwal, A.K. Structure 16, 549–557 (2008).

    Article  CAS  Google Scholar 

  19. Zhu, D., Stumpf, C.R., Krahn, J.M., Wickens, M. & Hall, T.M. Proc. Natl. Acad. Sci. USA 106, 20192–20197 (2009).

    Article  CAS  Google Scholar 

  20. Kedde, M. et al. Nat. Cell Biol. 12, 1014–1020 (2010).

    Article  CAS  Google Scholar 

  21. Gerber, A.P., Herschlag, D. & Brown, P.O. PLoS Biol. 2, E79 (2004).

    Article  Google Scholar 

  22. Isaacs, F.J. et al. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  Google Scholar 

  23. Zenklusen, D., Larson, D.R. & Singer, R.H. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).

    Article  CAS  Google Scholar 

  24. Filipovska, A. & Rackham, O. ACS Chem. Biol. 3, 51–63 (2008).

    Article  CAS  Google Scholar 

  25. Isaacs, F.J., Dwyer, D.J. & Collins, J.J. Nat. Biotechnol. 24, 545–554 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Wickens (University of Wisconsin–Madison) for the YBZ1 yeast strain, T. Ito (University of Tokyo) for the pGAD-RC plasmid, R. King for advice on oligonucleotide synthesis with trimer phosphoramidites and K.L. Hamilton for technical assistance. This work was supported by fellowships and grants from the Australian Research Council and the National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

A.F., M.F.M.R., K.K.A.N. and O.R. conducted experiments; A.F. and O.R. designed experiments, interpreted data and prepared the manuscript.

Corresponding author

Correspondence to Oliver Rackham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 469 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipovska, A., Razif, M., Nygård, K. et al. A universal code for RNA recognition by PUF proteins. Nat Chem Biol 7, 425–427 (2011). https://doi.org/10.1038/nchembio.577

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing