Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis

Abstract

Biosynthesis enables renewable production of manifold compounds, yet often biosynthetic performance must be improved for it to be economically feasible. Nongenetic, cell-to-cell variations in protein and metabolite concentrations are naturally inherent, suggesting the existence of both high- and low-performance variants in all cultures. Although having an intrinsic source of low performers might cause suboptimal ensemble biosynthesis, the existence of high performers suggests an avenue for performance enhancement. Here we develop in vivo population quality control (PopQC) to continuously select for high-performing, nongenetic variants. We apply PopQC to two biosynthetic pathways using two alternative design principles and demonstrate threefold enhanced production of both free fatty acid (FFA) and tyrosine. We confirm that PopQC improves ensemble biosynthesis by selecting for nongenetic high performers. Additionally, we use PopQC in fed-batch FFA production and achieve 21.5 g l−1 titer and 0.5 g l−1 h−1 productivity. Given the ubiquity of nongenetic variation, PopQC should be applicable to a variety of metabolic pathways for enhanced biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-to-cell variation in biosynthetic performance of the FFA pathway within an isoclonal population.
Figure 2: Design principle of PopQC.
Figure 3: PopQC improves FFA overproduction.
Figure 4: Expanding the applicability of PopQC.

Similar content being viewed by others

References

  1. Schirmer, A., Rude, M.A., Li, X., Popova, E. & del Cardayre, S.B. Microbial biosynthesis of alkanes. Science 329, 559–562 (2010).

    Article  CAS  Google Scholar 

  2. Gronenberg, L.S., Marcheschi, R.J. & Liao, J.C. Next generation biofuel engineering in prokaryotes. Curr. Opin. Chem. Biol. 17, 462–471 (2013).

    Article  CAS  Google Scholar 

  3. Woolston, B.M., Edgar, S. & Stephanopoulos, G. Metabolic engineering: past and future. Annu. Rev. Chem. Biomol. Eng. 4, 259–288 (2013).

    Article  CAS  Google Scholar 

  4. Paddon, C.J. & Keasling, J.D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12, 355–367 (2014).

    Article  CAS  Google Scholar 

  5. Kim, E., Moore, B.S. & Yoon, Y.J. Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nat. Chem. Biol. 11, 649–659 (2015).

    Article  CAS  Google Scholar 

  6. Nielsen, J. et al. Engineering synergy in biotechnology. Nat. Chem. Biol. 10, 319–322 (2014).

    Article  CAS  Google Scholar 

  7. Na, D. et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31, 170–174 (2013).

    Article  CAS  Google Scholar 

  8. Lidstrom, M.E. & Konopka, M.C. The role of physiological heterogeneity in microbial population behavior. Nat. Chem. Biol. 6, 705–712 (2010).

    Article  CAS  Google Scholar 

  9. Müller, S., Harms, H. & Bley, T. Origin and analysis of microbial population heterogeneity in bioprocesses. Curr. Opin. Biotechnol. 21, 100–113 (2010).

    Article  Google Scholar 

  10. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    Article  CAS  Google Scholar 

  11. Li, G.W. & Xie, X.S. Central dogma at the single-molecule level in living cells. Nature 475, 308–315 (2011).

    Article  CAS  Google Scholar 

  12. Guimaraes, J.C., Rocha, M. & Arkin, A.P. Transcript level and sequence determinants of protein abundance and noise in Escherichia coli. Nucleic Acids Res. 42, 4791–4799 (2014).

    Article  CAS  Google Scholar 

  13. Zenobi, R. Single-cell metabolomics: analytical and biological perspectives. Science 342, 1243259 (2013).

    Article  CAS  Google Scholar 

  14. Paige, J.S., Nguyen-Duc, T., Song, W. & Jaffrey, S.R. Fluorescence imaging of cellular metabolites with RNA. Science 335, 1194 (2012).

    Article  CAS  Google Scholar 

  15. Love, K.R., Panagiotou, V., Jiang, B., Stadheim, T.A. & Love, J.C. Integrated single-cell analysis shows Pichia pastoris secretes protein stochastically. Biotechnol. Bioeng. 106, 319–325 (2010).

    PubMed  Google Scholar 

  16. Mustafi, N., Grünberger, A., Kohlheyer, D., Bott, M. & Frunzke, J. The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metab. Eng. 14, 449–457 (2012).

    Article  CAS  Google Scholar 

  17. Labhsetwar, P., Cole, J.A., Roberts, E., Price, N.D. & Luthey-Schulten, Z.A. Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population. Proc. Natl. Acad. Sci. USA 110, 14006–14011 (2013).

    Article  CAS  Google Scholar 

  18. Delvigne, F., Zune, Q., Lara, A.R., Al-Soud, W. & Sørensen, S.J. Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends Biotechnol. 32, 608–616 (2014).

    Article  CAS  Google Scholar 

  19. Lu, X., Vora, H. & Khosla, C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab. Eng. 10, 333–339 (2008).

    Article  CAS  Google Scholar 

  20. Xu, P. et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 4, 1409 (2013).

    Article  Google Scholar 

  21. Blazeck, J. et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat. Commun. 5, 3131 (2014).

    Article  Google Scholar 

  22. Zhang, F., Carothers, J.M. & Keasling, J.D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).

    Article  CAS  Google Scholar 

  23. Lawrence, M.S., Phillips, K.J. & Liu, D.R. Supercharging proteins can impart unusual resilience. J. Am. Chem. Soc. 129, 10110–10112 (2007).

    Article  CAS  Google Scholar 

  24. Lütke-Eversloh, T., Santos, C.N. & Stephanopoulos, G. Perspectives of biotechnological production of L-tyrosine and its applications. Appl. Microbiol. Biotechnol. 77, 751–762 (2007).

    Article  Google Scholar 

  25. Pittard, J., Camakaris, H. & Yang, J. The TyrR regulon. Mol. Microbiol. 55, 16–26 (2005).

    Article  CAS  Google Scholar 

  26. Liu, D., Xiao, Y., Evans, B.S. & Zhang, F. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth. Biol. 4, 132–140 (2015).

    Article  CAS  Google Scholar 

  27. Doroshenko, V. et al. YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol. Lett. 275, 312–318 (2007).

    Article  CAS  Google Scholar 

  28. Chou, H.H. & Keasling, J.D. Programming adaptive control to evolve increased metabolite production. Nat. Commun. 4, 2595 (2013).

    Article  Google Scholar 

  29. Conrad, T.M. et al. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc. Natl. Acad. Sci. USA 107, 20500–20505 (2010).

    Article  CAS  Google Scholar 

  30. Nakata, K., Koh, M.M., Tsuchido, T. & Matsumura, Y. All genomic mutations in the antimicrobial surfactant-resistant mutant, Escherichia coli OW66, are involved in cell resistance to surfactant. Appl. Microbiol. Biotechnol. 87, 1895–1905 (2010).

    Article  CAS  Google Scholar 

  31. Foster, P.L. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42, 373–397 (2007).

    Article  CAS  Google Scholar 

  32. Dietrich, J.A., Shis, D.L., Alikhani, A. & Keasling, J.D. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth. Biol. 2, 47–58 (2013).

    Article  CAS  Google Scholar 

  33. Raman, S., Rogers, J.K., Taylor, N.D. & Church, G.M. Evolution-guided optimization of biosynthetic pathways. Proc. Natl. Acad. Sci. USA 111, 17803–17808 (2014).

    Article  CAS  Google Scholar 

  34. Veening, J.W., Smits, W.K. & Kuipers, O.P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).

    Article  CAS  Google Scholar 

  35. Jablonka, E. & Raz, G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84, 131–176 (2009).

    Article  Google Scholar 

  36. Kiviet, D.J. et al. Stochasticity of metabolism and growth at the single-cell level. Nature 514, 376–379 (2014).

    Article  CAS  Google Scholar 

  37. Keasling, J.D. Manufacturing molecules through metabolic engineering. Science 330, 1355–1358 (2010).

    Article  CAS  Google Scholar 

  38. Tanaka, A. & Nakajima, H. Application of immobilized growing cells. Adv. Biochem. Eng. Biotechnol. 42, 97–131 (1990).

    CAS  PubMed  Google Scholar 

  39. Barber, W.P. & Stuckey, D.C. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res. 33, 1559–1578 (1999).

    Article  CAS  Google Scholar 

  40. Dahl, R.H. et al. Engineering dynamic pathway regulation using stress-response promoters. Nat. Biotechnol. 31, 1039–1046 (2013).

    Article  CAS  Google Scholar 

  41. Zhang, F. & Keasling, J. Biosensors and their applications in microbial metabolic engineering. Trends Microbiol. 19, 323–329 (2011).

    Article  CAS  Google Scholar 

  42. Fernandes, R.L. et al. Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol. Adv. 29, 575–599 (2011).

    Article  Google Scholar 

  43. van Heerden, J.H. et al. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343, 1245114 (2014).

    Article  Google Scholar 

  44. Wang, B.L. et al. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat. Biotechnol. 32, 473–478 (2014).

    Article  CAS  Google Scholar 

  45. Levine, E. & Hwa, T. Stochastic fluctuations in metabolic pathways. Proc. Natl. Acad. Sci. USA 104, 9224–9229 (2007).

    Article  CAS  Google Scholar 

  46. Oyarzún, D.A., Lugagne, J.B. & Stan, G.B. Noise propagation in synthetic gene circuits for metabolic control. ACS Synth. Biol. 4, 116–125 (2015).

    Article  Google Scholar 

  47. Lee, T.S. et al. BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J. Biol. Eng. 5, 12 (2011).

    Article  CAS  Google Scholar 

  48. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS One 3, e3647 (2008).

    Article  Google Scholar 

  49. Kempe, K., Hsu, F.F., Bohrer, A. & Turk, J. Isotope dilution mass spectrometric measurements indicate that arachidonylethanolamide, the proposed endogenous ligand of the cannabinoid receptor, accumulates in rat brain tissue post mortem but is contained at low levels in or is absent from fresh tissue. J. Biol. Chem. 271, 17287–17295 (1996).

    Article  CAS  Google Scholar 

  50. Juminaga, D. et al. Modular engineering of L-tyrosine production in Escherichia coli. Appl. Environ. Microbiol. 78, 89–98 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge D. Liu at Harvard University for the GFP reporter gene. The authors would like to thank K. Naegle, C. Immethun, A. Hoynes-O'Connor, D. Giblin, F.-F. Hsu and E. Lantelme for technical assistance and the Genome Technology Access Center in the Department of Genetics at Washington University School of Medicine for helping with genomic analysis. This work was supported by a start-up package from Washington University, the Defense Advanced Research Projects Agency (D13AP00038 to F.Z.), the National Science Foundation (MCB1453147 and MCB1331194, both to F.Z.), the Human Frontier Science Program (RGY0076/2015 to F.Z.) and the International Center for Advanced Renewable Energy and Sustainability (I-CARES).

Author information

Authors and Affiliations

Authors

Contributions

F.Z. conceived the project. F.Z., Y.X. and C.H.B. designed the experiments. Y.X. and C.H.B. performed the experiments. F.Z., Y.X., C.H.B. and D.L. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Fuzhong Zhang.

Ethics declarations

Competing interests

Y.X. and F.Z. have filed a patent application ("A Genetically-Encoded Quality Control System for Improving the Microbial Production of Chemicals, Pharmaceuticals and Fuels," US Provisional Patent Application Ser. No. #62/214,248) on the basis of this contribution.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12, Supplementary Tables 1–4 and Supplementary Note. (PDF 2137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Bowen, C., Liu, D. et al. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol 12, 339–344 (2016). https://doi.org/10.1038/nchembio.2046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2046

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research