Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Glucosinolate engineering identifies a γ-glutamyl peptidase

Abstract

Consumption of cruciferous vegetables is associated with reduced risk of developing cancer, a phenomenon attributed to glucosinolates, which are characteristic of these vegetables. We report production of the bioactive benzylglucosinolate in the noncruciferous plant Nicotiana benthamiana through metabolic engineering. The study includes identification of γ-glutamyl peptidase 1 (GGP1), which substantially increased glucosinolate production by metabolizing an accumulating glutathione conjugate, an activity not previously described for glucosinolate biosynthesis or for proteins containing glutamine amidotransferase domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Production of BGLS in N. benthamiana upon cotransformation with ORF1 and ORF2.
Figure 2: GGP1 increases BGLS production by metabolizing GS-B.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hayes, J.D., Kelleher, M.O. & Eggleston, I.M. Eur. J. Nutr. 47, 73–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Higdon, J.V., Delage, B., Williams, D.E. & Dashwood, R.H. Pharmacol. Res. 55, 224–236 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. International Agency for Research on Cancer Workgroup. Cruciferous Vegetables, Isothiocyanates and Indoles (IARC Press, Lyon, France, 2004).

  4. Halkier, B.A. & Gershenzon, J. Annu. Rev. Plant Biol. 57, 303–333 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Juge, N., Mithen, R.C. & Traka, M. Cell. Mol. Life Sci. 64, 1105–1127 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Clarke, J.D., Dashwood, R.H. & Ho, E. Cancer Lett. 269, 291–304 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Traka, M. et al. PLoS One 3, e2568 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hansen, C.H. et al. J. Biol. Chem. 276, 24790–24796 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Schlaeppi, K., Bodenhausen, D., Buchala, A., Mausch, F. & Reymond, P. Plant J. 55, 774–786 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi, H. J. Biochem. 118, 463–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Schwimmer, S. & Kjaer, A. Biochim. Biophys. Acta 42, 316–324 (1960).

    Article  CAS  PubMed  Google Scholar 

  12. Martin, M.N., Saladores, P.H., Lambert, E., Hudson, A.O. & Leustek, T. Plant Physiol. 144, 1715–1732 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kurihara, S., Oda, S., Kumagai, H. & Suzuki, H. FEMS Microbiol. Lett. 256, 318–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. de Felipe, P. et al. Trends Biotechnol. 24, 68–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Geu-Flores, F., Olsen, C.E. & Halkier, B.A. Planta 229, 261–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Voinnet, O., Rivas, S., Mestre, P. & Baulcombe, D. Plant J. 33, 949–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Saito, K., Hirai, M.Y. & Yonekura-Sakakibara, K. Trends Plant Sci. 13, 36–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Kleinwächter, M., Schnug, E. & Selmar, D. J. Agric. Food Chem. 56, 11165–11170 (2008).

    Article  PubMed  Google Scholar 

  19. Charron, C.S., Saxton, A.M. & Sams, C.E. J. Sci. Food Agric. 85, 671–681 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Danish International Developmental Agency for a PhD stipend to F.G.-F. (DANIDA project no. 91175) and the Villum Kann Rasmussen Fond for its support to the VKR Research Centre for Pro-Active Plants. We also thank Novozymes for the Novo Scholarship to M.T.N. and M.E.M.

Author information

Authors and Affiliations

Authors

Contributions

F.G.-F. and B.A.H. formulated the project; M.T.N. and M.E.M. performed experiments in N. benthamiana; F.G.-F. and M.N. expressed GGP1 in E. coli and performed kinetic measurements; M.S.M. synthesized GS-B; C.E.O. performed LC-MS analysis; F.G.-F. and M.T.N. analyzed the data; F.G.-F., M.T.N. and B.A.H. wrote the manuscript.

Corresponding author

Correspondence to Barbara Ann Halkier.

Ethics declarations

Competing interests

The heterologous production of glucosinolates is the subject of a PCT patent application filed 27 February 2009 (PCT/IB2009/000500).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Scheme 1 and Supplementary Methods (PDF 309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geu-Flores, F., Nielsen, M., Nafisi, M. et al. Glucosinolate engineering identifies a γ-glutamyl peptidase. Nat Chem Biol 5, 575–577 (2009). https://doi.org/10.1038/nchembio.185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing