Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Labelling and determination of the energy in reactive intermediates in solution enabled by energy-dependent reaction selectivity

Abstract

Any long-lived chemical structure in solution is subject to statistical energy equilibration, so the history of any specific structure does not affect its subsequent reactions. This is not true for very short-lived intermediates because energy equilibration takes time. Here, this idea is applied to achieve the ‘energy labelling’ of a reactive intermediate. The selectivity of the ring-opening α-cleavage reaction of the 1-methylcyclobutoxy radical is found here to vary broadly depending on how the radical was formed. Reactions that provide little excess energy to the intermediate lead to a high selectivity in the subsequent cleavage (measured as a kinetic isotope effect), whereas reactions that provide more excess energy to the intermediate exhibit a lower selectivity. Accounting for the expected excess energy allows the prediction of the observed product ratios and, in turn, the product ratios can be used to determine the energy present in an intermediate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Partitioning of energy to 1 provided by different mechanistic origins.
Figure 3
Figure 4: Energy determination in the assignment of an unknown mechanism.

Similar content being viewed by others

References

  1. Griesbeck, A. G., Mauder, H. & Stadtmüller, S. Intersystem crossing in triplet 1,4-biradicals: conformational memory effects on the stereoselectivity of photocycloaddition reactions. Acc. Chem. Res. 27, 70–75 (1994).

    Article  CAS  Google Scholar 

  2. Alezra, V. & Kawabata, T. Recent progress in memory of chirality (MOC): an advanced chiral pool. Synthesis 48, 2997–3016 (2016).

    Article  CAS  Google Scholar 

  3. Hembury, G. A., Borovkov, V. V. & Inoue, Y. Chirality-sensing supramolecular systems. Chem. Rev. 108, 1–73 (2008).

    Article  CAS  Google Scholar 

  4. Berson, J. A. Memory effects and stereochemistry in multiple carbonium ion rearrangements. Angew. Chem. Int. Ed. 10, 779–791 (1968).

    Article  Google Scholar 

  5. Ghigo, G., Maranzana, A. & Tonachini, G. Memory effects in carbocation rearrangements: structural and dynamic study of the norborn-2-en-7-ylmethyl-X solvolysis case. J. Org. Chem. 78, 9041–9050 (2013).

    Article  CAS  Google Scholar 

  6. Bunker, D. L. & Hase, W. L. On non-RRKM unimolecular kinetics: molecules in general, and CH3NC in particular. J. Chem. Phys. 59, 4621–4632 (1973).

    Article  CAS  Google Scholar 

  7. Elles, C. G., Cox, J. & Crim, F. F. Vibrational relaxation of CH3I in the gas phase and in solution. J. Chem. Phys. 120, 6973–6979 (2004).

    Article  CAS  Google Scholar 

  8. Assmann, J. et al. Real-time observation of intra- and intermolecular vibrational energy flow of selectively excited alkyl iodides in solution: the effect of chemical substitution. J. Phys. Chem. A 106, 5197–5201 (2002).

    Article  CAS  Google Scholar 

  9. Sibert, E. L. III, Rames, S. G. & Gulmen, T. S. Vibrational relaxation of OH and CH fundamentals of polar and nonpolar molecules in the condensed phase. J. Phys. Chem. A 112, 11291–11305 (2008).

    Article  CAS  Google Scholar 

  10. Rynbrandt, J. D. & Rabinovich, B. S. Intramolecular energy relaxation. nonrandom decomposition of hexafluorobicyclopropyl. J. Phys. Chem. 75, 2164–2171 (1971).

    Article  Google Scholar 

  11. Collins, P., Kramer, Z. C., Carpenter, B. K., Ezra, G. S. & Wiggins, S. Nonstatistical dynamics on the caldera. J. Chem. Phys. 141, 034111 (2014).

    Article  Google Scholar 

  12. Kurouchi, H., Andujar-De Sanctis, I. L. & Singleton, D. A. Controlling selectivity by controlling energy partitioning in a thermal reaction in solution. J. Am. Chem. Soc. 138, 14534–14537 (2016).

    Article  CAS  Google Scholar 

  13. Quijano, L. M. M. & Singleton, D. A. Competition between reaction and intramolecular energy redistribution in solution: observation and nature of nonstatistical dynamics in the ozonolysis of vinyl ethers. J. Am. Chem. Soc. 133, 13824–13827 (2011).

    Article  CAS  Google Scholar 

  14. Jenks, W. S., Gregory, D. D., Guo, Y., Lee, W. & Tetzlaff, T. in Organic Photochemistry (eds Ramamurthy, V. & Schanze, K. S.) 48–50 (Marcel Dekker, 1997).

    Google Scholar 

  15. Gregory, D. D. & Jenks, W. S. Thermochemistry of sulfenic esters (RSOR′): not just another pretty peroxide. J. Org. Chem. 63, 3859–3865 (1998).

    Article  CAS  Google Scholar 

  16. Ollivier, C. & Renaud, P. Organoboranes as a source of radicals. Chem. Rev. 101, 3415–3434 (2001).

    Article  CAS  Google Scholar 

  17. Singleton, D. A. & Szymanski, M. J. Simultaneous determination of intermolecular and intramolecular 13C and 2H kinetic isotope effects at natural abundance. J. Am. Chem. Soc. 121, 9455–9456 (1999).

    Article  CAS  Google Scholar 

  18. Singleton, D. A. & Schulmeier, B. E. Evidence for a concerted mechanism in a palladium trimethylenemethane cycloaddition. J. Am. Chem. Soc. 121, 9313–9317 (1999).

    Article  CAS  Google Scholar 

  19. Gonzalez-James, O. M. et al. Experimental evidence for heavy-atom tunneling in the ring-opening of cyclopropylcarbinyl radical from intramolecular 12C/13C kinetic isotope effects. J. Am. Chem. Soc. 132, 12548–12549 (2010).

    Article  CAS  Google Scholar 

  20. Zheng, J. et al. GAUSSRATE, version 2009-A (University of Minnesota, 2010).

    Google Scholar 

  21. Zheng, J. et al. POLYRATE–version 2010 (University of Minnesota, 2010).

    Google Scholar 

  22. Sun, L., Park, K., Song, K., Setser, D. W. & Hase, W. L. Use of a single trajectory to study product energy partitioning in unimolecular dissociation: mass effects for halogenated alkanes. J. Chem. Phys. 124, 064313 (2006).

    Article  Google Scholar 

  23. Pasto, D. J., Cottard, F. & Horgan, S. Self-induced, photochemical, singlet-oxygen oxidation of 4-nitrobenzenesulfenates to 4-nitrobenzenesulfinates. J. Org. Chem. 58, 4110–4112 (1993).

    Article  CAS  Google Scholar 

  24. Busch, G. E. & Wilson, K. R. Triatomic photofragment spectra. I. Energy partitioning in NO2 photodissociation. J. Chem. Phys. 56, 3626–3638 (1972).

    Article  CAS  Google Scholar 

  25. Hare, S. R., Pemberton, R. P. & Tantillo, D. J. Navigating past a fork in the road: carbocation–π interactions can manipulate dynamic behavior of reactions facing post-transition-state bifurcations. J. Am. Chem. Soc. 139, 7485–7493 (2017).

    Article  CAS  Google Scholar 

  26. Spezia, R., Martinez-Nunez, E., Vasquez, S. & Hase, W. L. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces. Phil. Trans. R. Soc. A 375, 20170035 (2017).

    Article  Google Scholar 

  27. Mikosch, J. et al. Imaging nucleophilic substitution dynamics. Science 319, 183–186 (2008).

    Article  CAS  Google Scholar 

  28. Orlando, J. J. & Tyndall, G. S. Oxidation mechanisms for ethyl chloride and ethyl bromide under atmospheric conditions. J. Phys. Chem. A 106, 312–319 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health (grant GM-45617) for financial support. H.K. thanks the Japan Society for the Promotion of Science for a Postdoctoral Fellowship for Research Abroad. We thank J. Martin for a preliminary study of the synthesis and reaction of 9.

Author information

Authors and Affiliations

Authors

Contributions

H.K. carried out all the experimental work and most of the computations, and chose the specific systems studied. Both authors analysed the results. D.A.S. conceived the general idea and wrote most of the manuscript.

Corresponding author

Correspondence to Daniel A. Singleton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurouchi, H., Singleton, D. Labelling and determination of the energy in reactive intermediates in solution enabled by energy-dependent reaction selectivity. Nature Chem 10, 237–241 (2018). https://doi.org/10.1038/nchem.2907

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing