Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal

Abstract

Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dehydrogenation of cyclohexane using the alkylidyne precursor (PNP)Ti=CHtBu(CH2tBu), along with a proposed mode for the decomposition of the phosphorus ylide H2CPPh3.
Figure 2: Crystal structures of the phosphorus ylide 2 and catalyst 1 along with reactivity of (PNP)Ti=CHtBu(CH2tBu) with 2 and cyclohexane.
Figure 3: Proposed catalytic transfer dehydrogenation cycle using the resting state of the catalyst, namely complex 1.
Figure 4: Computed Gibbs free energy profile for the dehydrogenation of cyclohexane along with optimized structures.
Figure 5: Scheme showing how phosphorus ylide 2 can react with stable titanium 1-hexene adduct (PNP)Ti(CH2tBu)(H2C=CHnBu) to form catalyst 1, free phosphine P(C12H8)Ph and release the α-olefin 1-hexene.

Similar content being viewed by others

References

  1. Sadrameli, S. M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review. I: thermal cracking review. Fuel 140, 102–115 (2015).

    Article  CAS  Google Scholar 

  2. Ren, T., Patel, M. & Blok, K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes. Energy 31, 425–451 (2006).

    Article  CAS  Google Scholar 

  3. Tullo, A. H. Refining chemicals. Chem. Eng. News 85, 27–29 (2007).

    Google Scholar 

  4. Tullo, A. H. Ethylene from methane. Chem. Eng. News 89, 20–21 (2011).

    Google Scholar 

  5. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 110, 681–703 (2010).

    Article  CAS  Google Scholar 

  6. Zhang, Y., Yao, W., Fang, H., Hu, A. & Huang, Z. Catalytic alkane dehydrogenations. Sci. Bull. 60, 1316–1331 (2015).

    Article  CAS  Google Scholar 

  7. Kumar, A. & Goldman, A. S. Recent advances in alkane dehydrogenation catalyzed by pincer complexes. Top. Organomet. Chem. 54, 307–334 (2015).

    Article  Google Scholar 

  8. Nomura, K. & Saito, Y. n-Alkene and dihydrogen formation from n-alkanes by photocatalysis using carbonyl(chloro)phosphine–rhodium complexes. J. Chem. Soc. Chem. Commun. 161–162 (1988).

  9. Maguire, J. A., Boese, W. T. & Goldman, A. S. Photochemical dehydrogenation of alkanes catalyzed by trans-carbonylchlorobis(trimethylphosphine)rhodium: aspects of selectivity and mechanism. J. Am. Chem. Soc. 111, 7088–7093 (1989).

    Article  CAS  Google Scholar 

  10. Chowdury, A. D. et al. Towards a practical development of light-driven acceptorless alkane dehydrogenation. Angew. Chem. Int. Ed. 53, 6477–6481 (2014).

    Article  Google Scholar 

  11. Felkin, H., Fillebeen-Khan, T., Gault, Y., Holmes-Smith, R. & Zakrzewski, J. Activation of C–H bonds in saturated hydrocarbons. The catalytic functionalisation of cyclooctane by means of some soluble iridium and ruthenium polyhydride systems. Tetrahedron Lett. 25, 1279–1282 (1984).

    Article  CAS  Google Scholar 

  12. Six, C. et al. Inter- and intramolecular thermal activation of sp3 C−H bonds with ruthenium bisallyl complexes. Organometallics 18, 3316–3326 (1999).

    Article  CAS  Google Scholar 

  13. Gruver, B. C., Adams, J. J., Warner, S. J., Arulsamy, N. & Roddick, D. M. Acceptor pincer chemistry of ruthenium: catalytic alkane dehydrogenation by ( PCP CF 3 )Ru(cod)(H). Organometallics 30, 5133–5140 (2011).

    Article  CAS  Google Scholar 

  14. Choi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S. Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem. Rev. 111, 1761–1779 (2011).

    Article  CAS  Google Scholar 

  15. Gupta, M., Hagen, C., Flesher, R. J., Kaska, W. C. & Jensen, C. M. A highly active alkane dehydrogenation catalyst: stabilization of dihydrido rhodium and iridium complexes by a P–C–P pincer ligand. Chem. Commun. 2083–2084 (1996).

  16. Gupta, M., Hagen, C., Kaska, W. C., Cramer, R. E. & Jensen, C. M. Catalytic dehydrogenation of cycloalkanes to arenes by a dihydrido iridium P−C−P pincer complex. J. Am. Chem. Soc. 119, 840–841 (1997).

    Article  CAS  Google Scholar 

  17. Xu, W. et al. Thermochemical alkane dehydrogenation catalyzed in solution without the use of a hydrogen acceptor. Chem. Commun. 2273–2274 (1997).

  18. Baudry, D., Ephritikhine, M., Felkin, H. & Holmes-Smith, R. The selective catalytic conversion of cycloalkanes into cycloalkenes using a soluble rhenium polyhydride system. J. Chem. Soc. Chem. Commun. 788–789 (1983).

  19. Baudry, D., Ephritikhine, M., Felkin, H. & Zakrzewski, J. Activation of C–H bonds in saturated hydrocarbons. The formation of bis(triphenylphospine)(η-alkadiene)rhenium trihydrides from n-alkanes, and their selective conversion into the corresponding 1-alkenes. Tetrahedron Lett. 25, 1283–1286 (1984).

    Article  CAS  Google Scholar 

  20. Gruver, B. C., Adams, J. J., Arulsamy, N. & Roddick, D. M. Acceptor pincer chemistry of osmium: catalytic alkane dehydrogenation by ( PCP CF 3 )Os(cod)(H). Organometallics 32, 6468–6475 (2013).

    Article  CAS  Google Scholar 

  21. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation–olefin metathesis. Science 312, 257–261 (2006).

    Article  CAS  Google Scholar 

  22. Ahuja, R. et al. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes. Nat. Chem. 3, 167–171 (2011).

    Article  CAS  Google Scholar 

  23. Kumar, A. et al. Dehydrogenation of n-alkanes by solid-phase molecular pincer-iridium catalysts. High yields of α-olefin product. J. Am. Chem. Soc. 137, 9894–9911 (2015).

    Article  CAS  Google Scholar 

  24. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 1–7 (2015).

    Article  Google Scholar 

  25. Flores, J. A. et al. Methane activation and exchange by titanium–carbon multiple bonds. Chem. Sci. 2, 1457–1462 (2011).

    Article  CAS  Google Scholar 

  26. Cavaliere, V. N. & Mindiola, D. J. Methane: a new frontier in organometallic chemistry. Chem. Sci. 3, 3356–3365 (2012).

    Article  CAS  Google Scholar 

  27. Cavaliere, V. N. et al. Room temperature dehydrogenation of ethane to ethylene. J. Am. Chem. Soc. 133, 10700–10703 (2011).

    Article  CAS  Google Scholar 

  28. Crestani, M. G. et al. Room temperature dehydrogenation of ethane, propane, linear alkanes C4−C8, and some cyclic alkanes by titanium–carbon multiple bonds. J. Am. Chem. Soc. 135, 14754–14767 (2013).

    Article  CAS  Google Scholar 

  29. Hickey, A. K. et al. Dehydrogenation of hydrocarbons with metal–carbon multiple bonds and trapping of a titanium(II) intermediate. Dalton Trans. 43, 9834–9837 (2014).

    Article  CAS  Google Scholar 

  30. Kamitani, M. et al. Phosphinoalkylidene and -alkylidyne complexes of titanium: intermolecular C–H bond activation and dehydrogenation reactions. J. Am. Chem. Soc. 137, 11872–11875 (2015).

    Article  CAS  Google Scholar 

  31. Neumann, R. A. & Berger, S. Observation of a betaine lithium salt adduct during the course of a Wittig reaction. Eur. J. Org. Chem. 1085–1087 (1998).

  32. Yang, L., Powell, D. R. & Houser, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4 . Dalton Trans. 955–964 (2007).

  33. Bart, J. C. J. Structure of the non-stabilized phosphonium ylid methylenetriphenylphosphorane. J. Chem. Soc. B 350–365 (1969).

  34. Schrock, R. R. High oxidation state multiple metal−carbon bonds. Chem. Rev. 102, 145–180 (2002).

    Article  CAS  Google Scholar 

  35. Sharp, P. R. & Schrock, R. R. Multiple metal–carbon bonds: XIV. Preparation of alkylidenetantalum complexes by alkylidene transfer from phosphoranes. The first ethylidene complex and how it decomposes. J. Organomet. Chem. 171, 43–51 (1979).

    Article  CAS  Google Scholar 

  36. Schwartz, J. & Gell, K. I. The preparation of a di(cyclopentadienyl)zirconium methylene species from a phosphorane. J. Organomet. Chem. 184, C1–C2 (1980).

    Article  CAS  Google Scholar 

  37. Gibson, V. C., Parkin, G. & Bercaw, J. E. Synthesis and reactivity of permethyltantalocene derivatives possessing η3-allyl, η2-butadiene, η2-methylallene, and η1-alkenylidene ligands. Model studies for the role of surface vinylidenes in the Fischer–Tropsch hydrocarbon-chain-lengthening process. Organometallics 10, 220–231 (1991).

    Article  CAS  Google Scholar 

  38. Antonelli, D. M., Schaefer, W. P., Parkin, G. & Bercaw, J. E. Synthesis and characterization of (η5-C5Me5)2TaCl(THF), a useful synthetic precursor for the preparation of oxo, imido and methylidene derivatives of permethyltantalocene. J. Organomet. Chem. 462, 213–220 (1993).

    Article  CAS  Google Scholar 

  39. Buikink, J.-K. F., Teuben, J. H., Kooijman, H. & Spek, A. L. Synthesis, molecular structure, and reactivity of a half-sandwich vanadium(III) imido complex: the first vanadium(V) alkylidene. Organometallics 13, 2922–2924 (1994).

    Article  Google Scholar 

  40. Bailey, B. C. et al. Intermolecular C–H bond activation promoted by a titanium alkylidyne. J. Am. Chem. Soc. 127, 16016–16017 (2005).

    Article  CAS  Google Scholar 

  41. Bailey, B. C., Fan, H., Huffman, J. C., Baik, M.-H. & Mindiola, D. J. Intermolecular C–H bond activation reactions promoted by transient titanium alkylidynes. synthesis, reactivity, kinetic, and theoretical studies of the Ti≡C linkage. J. Am. Chem. Soc. 129, 8781–8793 (2007).

    Article  CAS  Google Scholar 

  42. Nawara-Hultzsch, A. J. et al. Rational design of highly active “hybrid” phosphine–phosphinite pincer iridium catalysts for alkane metathesis. ACS Catal. 3, 2505–2514 (2013).

    Article  CAS  Google Scholar 

  43. Kundu, S. et al. Rational design and synthesis of highly active pincer-iridium catalysts for alkane dehydrogenation. Organometallics 28, 5432–5444 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Berritt, J. Gu and G. Furst for discussions. The authors acknowledge the University of Pennsylvania and the National Science Foundation (CHE30848248 and CHE31152123) for funding support. This research was supported in part by the Institute for Basic Science (IBS-R010-D1) in Korea.

Author information

Authors and Affiliations

Authors

Contributions

D.P.S. and T.K. contributed equally to the experiments conducted in this work. M.V.M. and M.-H.B. conceived and analysed the computational component in the manuscript. D.J.M. conceived the study, and D.P.S and T.K. designed the experiments. T.K., P.J.C. and B.C.M. conducted crystallographic studies. M.-H.B. and D.J.M. co-wrote the manuscript.

Corresponding authors

Correspondence to Mu-Hyun Baik or Daniel J. Mindiola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2410 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 1331 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 1886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solowey, D., Mane, M., Kurogi, T. et al. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal. Nature Chem 9, 1126–1132 (2017). https://doi.org/10.1038/nchem.2795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing