Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2

Abstract

Industrial hydrogen production through methane steam reforming exceeds 50 million tons annually and accounts for 2–5% of global energy consumption. The hydrogen product, even after processing by the water–gas shift, still typically contains 1% CO, which must be removed for many applications. Methanation (CO + 3H2 → CH4 + H2O) is an effective solution to this problem, but consumes 5–15% of the generated hydrogen. The preferential oxidation (PROX) of CO with O2 in hydrogen represents a more-efficient solution. Supported gold nanoparticles, with their high CO-oxidation activity and notoriously low hydrogenation activity, have long been examined as PROX catalysts, but have shown disappointingly low activity and selectivity. Here we show that, under the proper conditions, a commercial Au/Al2O3 catalyst can remove CO to below 10 ppm and still maintain an O2-to-CO2 selectivity of 80–90%. The key to maximizing the catalyst activity and selectivity is to carefully control the feed-flow rate and maintain one to two monolayers of water (a key CO-oxidation co-catalyst) on the catalyst surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PROX performance and deactivation of Au/Al2O3 with water in the feed (1% CO, 1.4% O2, 60% H2, balance He).
Figure 2: High conversion PROX reactivity over Au/Al2O3.
Figure 3: Effect of SV on CO PROX catalysis over Au/Al2O3.
Figure 4: Effect of water and temperature on CO PROX catalysis over Au/Al2O3.
Figure 5: Gas-adsorption data.

Similar content being viewed by others

References

  1. Neef, H. J. International overview of hydrogen and fuel cell research. Energy 34, 327–333 (2009).

    Article  CAS  Google Scholar 

  2. Liu, K., Song, C. & Subramani, V. Hydrogen and Syngas Production and Purification Technologies (John Wiley & Sons, Inc., 2010).

    Google Scholar 

  3. Ghenciu, A. F. in Fuel Cells Compendium (eds Brandon, N. & Thompsett, D.) Ch. 5, 91–106 (Elsevier, 2005).

    Google Scholar 

  4. European Commission Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals – Ammonia, Acids and Fertilisers (European Commission, 2007).

    Google Scholar 

  5. Spath, P. L. & Mann, M. K. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming (Department of Energy, National Renewable Energy Laboratory, 2001).

    Google Scholar 

  6. Greenhouse Gas Emissions Calculations and References (US Environment Protection Agency, 2015); www.epa.gov/energy/ghg-equivalencies-calculator-calculations-and-references

  7. Landon, P. et al. Selective oxidation of CO in the presence of H2, H2O and CO2 utilising Au/α-Fe2O3 catalysts for use in fuel cells. J. Mater. Chem. 16, 199–208 (2006).

    Article  CAS  Google Scholar 

  8. Schumacher, B., Denkwitz, Y., Plzak, V., Kinne, M. & Behm, R. J. Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst. J. Catal. 224, 449–462 (2004).

    Article  CAS  Google Scholar 

  9. Lakshmanan, P., Park, J. & Park, E. Recent advances in preferential oxidation of CO in H2 over gold catalysts. Catal. Surv. Asia 18, 75–88 (2014).

    Article  CAS  Google Scholar 

  10. Green, I. X., Tang, W., Neurock, M. & Yates, J. T. Jr . Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333, 736–739 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold–titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

    Article  CAS  Google Scholar 

  13. Bond, G. C., Louis, C. & Thompson, D. T. Catalysis by Gold Vol. 6 (Imperial College Press, 2006).

    Book  Google Scholar 

  14. Avgouropoulos, G. et al. A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal. Today 75, 157–167 (2002).

    Article  CAS  Google Scholar 

  15. Grisel, R. J. H. & Nieuwenhuys, B. E. Selective oxidation of CO, over supported Au catalysts. J. Catal. 199, 48–59 (2001).

    Article  CAS  Google Scholar 

  16. Ivanova, S., Pitchon, V., Petit, C. & Caps, V. Support effects in the gold-catalyzed preferential oxidation of CO. ChemCatChem 2, 556–563 (2010).

    Article  CAS  Google Scholar 

  17. Widmann, D., Liu, Y., Schueth, F. & Behm, R. J. Support effects in the Au-catalyzed CO oxidation—correlation between activity, oxygen storage capacity, and support reducibility. J. Catal. 276, 292–305 (2010).

    Article  CAS  Google Scholar 

  18. Tompos, A. et al. Role of modifiers in multi-component MgO-supported Au catalysts designed for preferential CO oxidation. J. Catal. 266, 207–217 (2009).

    Article  CAS  Google Scholar 

  19. Liu, Y. et al. Three-dimensionally ordered macroporous Au/CeO2–Co3O4 catalysts with mesoporous walls for enhanced CO preferential oxidation in H2-rich gases. J. Catal. 296, 65–76 (2012).

    Article  CAS  Google Scholar 

  20. Li, X. et al. Activation and deactivation of Au-Cu/SBA-15 catalyst for preferential oxidation of CO in H2-rich gas. ACS Catal. 2, 360–369 (2012).

    Article  CAS  Google Scholar 

  21. Kim, W. B., Voitl, T., Rodriguez-Rivera, G. J., Evans, S. T. & Dumesic, J. A. Preferential oxidation of CO in H2 by aqueous polyoxometalates over metal catalysts. Angew. Chem. Int. Ed. 44, 778–782 (2005).

    Article  CAS  Google Scholar 

  22. Carrettin, S., Concepcion, P., Corma, A., Lopez Nieto, J. M. & Puntes, V. F. Gold catalysts: nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed. 43, 2538–2540 (2004).

    Article  CAS  Google Scholar 

  23. Cargnello, M. et al. Active and stable embedded Au@CeO2 catalysts for preferential oxidation of CO. Chem. Mater. 22, 4335–4345 (2010).

    Article  CAS  Google Scholar 

  24. Singh, J. A., Overbury, S. H., Dudney, N. J., Li, M. & Veith, G. M. Gold nanoparticles supported on carbon nitride: influence of surface hydroxyls on low temperature carbon monoxide oxidation. ACS Catal. 2, 1138–1146 (2012).

    Article  CAS  Google Scholar 

  25. Ketchie, W. C., Murayama, M. & Davis, R. J. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top. Catal. 44, 307–317 (2007).

    Article  CAS  Google Scholar 

  26. Ide, M. S. & Davis, R. J. The important role of hydroxyl on oxidation catalysis by gold nanoparticles. Acc. Chem. Res. 47, 825–833 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Date, M. & Haruta, M. Moisture effect on CO oxidation over Au/TiO2 catalyst. J. Catal. 201, 221–224 (2001).

    Article  CAS  Google Scholar 

  28. Date, M., Okumura, M., Tsubota, S. & Haruta, M. Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew. Chem. Int. Ed. 43, 2129–2132 (2004).

    Article  CAS  Google Scholar 

  29. Calla, J. T. & Davis, R. J. Oxygen-exchange reactions during CO oxidation over titania- and alumina-supported Au nanoparticles. J. Catal. 241, 407–416 (2006).

    Article  CAS  Google Scholar 

  30. Fujitani, T. & Nakamura, I. Mechanism and active sites of the oxidation of CO over Au/TiO2 . Angew. Chem. Int. Ed. 50, 10144–10147 (2011).

    Article  CAS  Google Scholar 

  31. Ojeda, M., Zhan, B.-Z. & Iglesia, E. Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters. J. Catal. 285, 92–102 (2012).

    Article  CAS  Google Scholar 

  32. Widmann, D. & Behm, R. J. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc. Chem. Res. 47, 740–749 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Kung, M. C., Davis, R. J. & Kung, H. H. Understanding Au-catalyzed low-temperature CO oxidation. J. Phys. Chem. C 111, 11767–11775 (2007).

    Article  CAS  Google Scholar 

  34. Haruta, M. Spiers Memorial Lecture. Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss. 152, 11–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Widmann, D., Hocking, E. & Behm, R. J. On the origin of the selectivity in the preferential CO oxidation on Au/TiO2—nature of the active oxygen species for H2 oxidation. J. Catal. 317, 272–276 (2014).

    Article  CAS  Google Scholar 

  36. Fujitani, T., Nakamura, I., Akita, T., Okumura, M. & Haruta, M. Hydrogen dissociation by gold clusters. Angew. Chem. Int. Ed. 48, 9515–9518 (2009).

    Article  CAS  Google Scholar 

  37. Cargnello, M. et al. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 341, 771–773 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kotobuki, M., Leppelt, R., Hansgen, D. A., Widmann, D. & Behm, R. J. Reactive oxygen on a Au/TiO2 supported catalyst. J. Catal. 264, 67–76 (2009).

    Article  CAS  Google Scholar 

  39. Schubert, M. M., Venugopal, A., Kahlich, M. J., Plzak, V. & Behm, R. J. Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3 . J. Catal. 222, 32–40 (2004).

    Article  CAS  Google Scholar 

  40. Saavedra, J., Powell, C., Panthi, B., Pursell, C. J. & Chandler, B. D. CO oxidation over Au/TiO2 catalyst: pretreatment effects, catalyst deactivation, and carbonates production. J. Catal. 307, 37–47 (2013).

    Article  CAS  Google Scholar 

  41. Denkwitz, Y. et al. Stability and deactivation of unconditioned Au/TiO2 catalysts during CO oxidation in a near-stoichiometric and O2-rich reaction atmosphere. J. Catal. 251, 363–373 (2007).

    Article  CAS  Google Scholar 

  42. Quinet, E. et al. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation. J. Catal. 268, 384–389 (2009).

    Article  CAS  Google Scholar 

  43. Carrasco, J., Hodgson, A. & Michaelides, A. A molecular perspective of water at metal interfaces. Nature Mater. 11, 667–674 (2012).

    Article  CAS  Google Scholar 

  44. Gong, J. Structure and surface chemistry of gold-based model catalysts. Chem. Rev. 112, 2987–3054 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Ikemiya, N. & Gewirth, A. A. Initial stages of water adsorption on Au surfaces. J. Am. Chem. Soc. 119, 9919–9920 (1997).

    Article  CAS  Google Scholar 

  46. Pursell, C. J., Hartshorn, H., Ward, T., Chandler, B. D. & Boccuzzi, F. Application of the Temkin model to the adsorption of CO on gold. J. Phys. Chem. C 115, 23880–23892 (2011).

    Article  CAS  Google Scholar 

  47. Guzman, J., Carrettin, S. & Corma, A. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2 . J. Am. Chem. Soc. 127, 3286–3287 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Bus, E., Miller, J. T. & van Bokhoven, J. A. Hydrogen chemisorption on Al2O3-supported gold catalysts. J. Phys. Chem. B 109, 14581–14587 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Hartshorn, H., Pursell, C. J. & Chandler, B. D. Adsorption of CO on supported gold nanoparticle catalysts: a comparative study. J. Phys. Chem. C 113, 10718–10725 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors kindly thank J. Kenvin (Micromeritics Instrument Corporation) and S.M.K. Shahri (Pennsylvania State University) for assistance with the measurement of the water-adsorption isotherms. The authors gratefully acknowledge the US National Science Foundation (Grant No CBET-1160217 and No. CHE-1012395) for financial support of this work. Z.C. and R.M.R. acknowledge the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Sciences Program under grant No. DE-FG02-12ER16364 for partial funding of this research.

Author information

Authors and Affiliations

Authors

Contributions

J.S., B.D.C. and C.J.P. designed the catalysis experiments; J.S. performed the catalysis experiments and analysed the data; B.D.C. and C.J.P. designed the infrared spectroscopy experiments; T.W. performed the infrared spectroscopy experiments and analysed the data; B.D.C. and R.M.R. designed the gas-adsorption experiments and analysed the data; Z.C. and R.M.R. designed and performed the X-ray photoemission spectroscopy and X-ray diffraction experiments (see the Supplementary Information) and analysed the data; J.S., B.D.C., R.M.R. and C.J.P. co-wrote the paper.

Corresponding author

Correspondence to Bert D. Chandler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saavedra, J., Whittaker, T., Chen, Z. et al. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2. Nature Chem 8, 584–589 (2016). https://doi.org/10.1038/nchem.2494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing