Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film

Abstract

The fabrication of porous coordination frameworks in thin-film forms has been investigated intensively with a view to using their structural response to external stimuli and guests for potential nanotechnological applications, for example as membranes for gas separation. Here we report a coordination framework that exhibits a dynamic guest-sorption behaviour in a nanometre-sized thin-film form (16 nm thick), yet shows no guest uptake in the bulk. Highly oriented crystalline thin films of this coordination framework—which consists of interdigitated two-dimensional layers of {Fe(py)2[Pt(CN)4]} (py, pyridine)—were fabricated through liquid-phase layer-by-layer synthesis. The resulting thin film exhibited a clear guest uptake with a structural transformation of the gate-opening type as characterized by in situ X-ray diffraction. Increasing the film's thickness markedly suppressed this behaviour. We envisage that such a crystal-downsizing effect may be observed with other coordination frameworks, and may be of use to develop functional materials, for example, for switching or sensing devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the various structural responses in different types of coordination frameworks.
Figure 2: Bulk-state structure of 1, and fabrication of a nanometre-sized thin film.
Figure 3: Synchrotron XRD profiles of film-1-30L.
Figure 4: Anisotropic structural change of film-1-30L induced by guest introduction.
Figure 5: Dynamic closed-to-open structural transformation of film-1-30L under ethanol vapour.

Similar content being viewed by others

References

  1. Blossey, R. Self-cleaning surfaces—virtual realities. Nature Mater. 2, 301–306 (2003).

    Article  CAS  Google Scholar 

  2. Parker, A. R., Welch, V. L., Driver, D. & Martini, N. Structural colour: opal analogue discovered in a weevil. Nature 426, 786–787 (2003).

    Article  CAS  Google Scholar 

  3. Hilf, R. J. C. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009).

    Article  CAS  Google Scholar 

  4. Kato, H. E. et al. Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482, 369–374 (2012).

    Article  CAS  Google Scholar 

  5. Long, S. B., Campbell, E. B. & MacKinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  6. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    Article  CAS  Google Scholar 

  7. Tokarev, I. & Minko, S. Stimuli-responsive hydrogel thin films. Soft Matter 5, 511–524 (2009).

    Article  CAS  Google Scholar 

  8. Mendes, P. M. Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 37, 2512–2529 (2008).

    Article  CAS  Google Scholar 

  9. Cohen Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).

    Article  CAS  Google Scholar 

  10. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  11. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  Google Scholar 

  12. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  13. Yamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. Designer co-ordination polymers: dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 42, 6655–6669 (2013).

    Article  CAS  Google Scholar 

  14. Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  15. Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700–5734 (2014).

    Article  CAS  Google Scholar 

  16. Kole, G. K. & Vittal, J. J. Solid-state reactivity and structural transformations involving coordination polymers. Chem. Soc. Rev. 42, 1755–1775 (2012).

    Article  Google Scholar 

  17. Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004).

    Article  CAS  Google Scholar 

  18. Sadakiyo, M., Yamada, T. & Kitagawa, H. Rational designs for highly proton-conductive metal–organic frameworks. J. Am. Chem. Soc. 131, 9906–9907 (2009).

    Article  CAS  Google Scholar 

  19. Yoon, M., Srirambalaji, R. & Kim, K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012).

    Article  CAS  Google Scholar 

  20. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  21. Serre, C. et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x·H2Oy . J. Am. Chem. Soc. 124, 13519–13526 (2002).

    Article  CAS  Google Scholar 

  22. Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew. Chem. Int. Ed. 42, 428–431 (2003).

    Article  CAS  Google Scholar 

  23. Matsuda, R. et al. Guest-shape responsive fitting of porous coordination polymer with shrinkable framework. J. Am. Chem. Soc. 126, 14063–14070 (2004).

    Article  CAS  Google Scholar 

  24. Chen, B. L. et al. A microporous metal–organic framework for gas chromatographic separation of alkanes. Angew. Chem. Int. Ed. 45, 1390–1393 (2006).

    Article  CAS  Google Scholar 

  25. Bétard, A. & Fischer, R. A. Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012).

    Article  Google Scholar 

  26. Shekhah, O., Liu, J., Fischer, R. A. & Wöll, C. MOF thin films: existing and future applications. Chem. Soc. Rev. 40, 1081–1106 (2011).

    Article  CAS  Google Scholar 

  27. Zacher, D., Schmid, R., Wöll, C. & Fischer, R. A. Surface chemistry of metal–organic frameworks at the liquid–solid interface. Angew Chem. Int. Ed. 50, 176–199 (2011).

    Article  CAS  Google Scholar 

  28. Otsubo, K. & Kitagawa, H. Metal–organic framework thin films with well-controlled growth directions confirmed by X-ray study. APL Mater. 2, 124105 (2014).

    Article  Google Scholar 

  29. Zhuang, J. L., Terfort, A. & Wöll, C. Formation of oriented and patterned films of metal–organic frameworks by liquid phase epitaxy: a review. Coord. Chem. Rev. 307, 391–424 (2016).

    Article  CAS  Google Scholar 

  30. Shekhah, O. et al. Step-by-step route for the synthesis of metal–organic frameworks. J. Am. Chem. Soc. 129, 15118–15119 (2007).

    Article  CAS  Google Scholar 

  31. Kanaizuka, K. et al. Construction of highly oriented crystalline surface coordination polymers composed of copper dithiooxamide complexes. J. Am. Chem. Soc. 130, 15778–15779 (2008).

    Article  CAS  Google Scholar 

  32. Arslan, H. K. et al. Intercalation in layered metal–organic frameworks: reversible inclusion of an extended π-system. J. Am. Chem. Soc. 133, 8158–8161 (2011).

    Article  CAS  Google Scholar 

  33. Liu, B. et al. Enantiopure metal–organic framework thin films: oriented SURMOF growth and enantioselective adsorption. Angew. Chem. Int. Ed. 51, 807–810 (2012).

    Article  CAS  Google Scholar 

  34. Otsubo, K., Haraguchi, T., Sakata, O., Fujiwara, A. & Kitagawa, H. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal–organic framework thin film confirmed by synchrotron X-ray diffraction. J. Am. Chem. Soc. 134, 9605–9608 (2012).

    Article  CAS  Google Scholar 

  35. Haraguchi, T., Otsubo, K., Sakata, O., Fujiwara, A. & Kitagawa, H. Remarkable lattice shrinkage in highly oriented crystalline three-dimensional metal–organic framework thin films. Inorg. Chem. 54, 11593–11595 (2015).

    Article  CAS  Google Scholar 

  36. Makiura, R. et al. Surface nano-architecture of a metal–organic framework. Nature Mater. 9, 565–571 (2010).

    Article  CAS  Google Scholar 

  37. Motoyama, S., Makiura, R., Sakata, O. & Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal–organic framework sheets. J. Am. Chem. Soc. 133, 5640–5643 (2011).

    Article  CAS  Google Scholar 

  38. Gang, X., Yamada, T., Otsubo, K., Sakaida, S. & Kitagawa, H. Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 134, 16524–16527 (2012).

    Article  Google Scholar 

  39. Scherb, C., Koehn, R. & Bein, T. Sorption behavior of an oriented surface-grown MOF-film studied by in situ X-ray diffraction. J. Mater. Chem. 20, 3046–3051 (2010).

    Article  CAS  Google Scholar 

  40. Lee, H. J., Cho, W., Jung, S. & Oh, M. Morphology-selective formation and morphology-dependent gas-adsorption properties of coordination polymer particles. Adv. Mater. 21, 674–677 (2009).

    Article  CAS  Google Scholar 

  41. Farha, O. K. et al. Gas-sorption properties of cobalt(II)–carborane-based coordination polymers as a function of morphology. Small 5, 1727–1731 (2009).

    Article  CAS  Google Scholar 

  42. Horcajada, P. et al. Colloidal route for preparing optical thin films of nanoporous metal–organic frameworks. Adv. Mater. 21, 1931–1935 (2009).

    Article  CAS  Google Scholar 

  43. Tanaka, D. et al. Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics. Nature Chem. 2, 410–416 (2010).

    Article  CAS  Google Scholar 

  44. Sakata, Y. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339, 193–196 (2013).

    Article  CAS  Google Scholar 

  45. Peng, H. et al. Re-appearance of cooperativity in ultra-small spin-crossover [Fe(pz){Ni(CN)4}] nanoparticles. Angew. Chem. Int. Ed. 53, 10894–10898 (2014).

    Article  CAS  Google Scholar 

  46. Hofmann, K. A. & Küspert, F. Verbindungen von Kohlenwasserstoffen mit Metallsalzen. Z. Anorg. Chem. 15, 204–207 (1897).

    Article  CAS  Google Scholar 

  47. Powell, H. M. & Rayner, J. H. Clathrate compound formed by benzene with an ammonia–nickel cyanide complex. Nature 163, 566–567 (1949).

    Article  CAS  Google Scholar 

  48. Kitazawa, T. et al. Spin-crossover behaviour of the coordination polymer FeII(C5H5N)2NiII(CN)4 . J. Mater. Chem. 6, 119–121 (1996).

    Article  CAS  Google Scholar 

  49. Niel, V., Martínez-Agudo, J. M., Muñoz, M. C., Gasper, A. B. & Real, J. A. Cooperative spin crossover behavior in cyanide-bridged Fe(II)–M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). Inorg. Chem. 40, 3838–3839 (2001).

    Article  CAS  Google Scholar 

  50. Ohba, M. et al. Bidirectional chemo-switching of spin state in a microporous framework. Angew. Chem. Int. Ed. 48, 4767–4771 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research (A) (Grant No. 20350030 and 23245012) and Grant-in-Aid for Young Scientists (B) (Grant No. 25810039) from the Japan Society for the Promotion of Science. Synchrotron XRD measurements were supported by JASRI (Proposal No. 2010B1468, 2011A1382, 2011A1463, 2011B1013, 2011B1529, 2012A1505, 2012A1508, 2012B1518, 2012B1304, 2013A1146, 2013A1486 and 2013B1410).

Author information

Authors and Affiliations

Authors

Contributions

K.O. and H.K. conceived the work and designed this study. S.S., K.O. and C.S. performed the experiments. O.S., C.S., A.F. and M.T. contributed to the synchrotron XRD measurements. S.S., K.O. and H.K. co-wrote the manuscript. All the authors discussed and commented on the paper.

Corresponding authors

Correspondence to Kazuya Otsubo or Hiroshi Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7447 kb)

Supplementary information

Crystallographic data for the bulk-1 structure. (CIF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakaida, S., Otsubo, K., Sakata, O. et al. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nature Chem 8, 377–383 (2016). https://doi.org/10.1038/nchem.2469

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing