Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembling biomolecular catalysts for hydrogen production

Abstract

The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression schematic showing a cartoon representation of EcHyd-1 with both subunits (hyaA and hyaB) fused to a scaffold protein encapsulated within the P22 capsid.
Figure 2: Expression and characterization of P22-Hydopt and P22-Hyd.
Figure 3: Expression and characterization of two other P22 hydrogenase constructs.
Figure 4: The P22 capsid provides protection from protease, thermal denaturation and air exposure with subsequent reactivation to its hydrogenase cargo.
Figure 5: FTIR spectra of P22-Hydopt and free, purified hydrogenase.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tanaka, S. et al. Atomic-level models of the bacterial carboxysome shell. Science 319, 1083–1086 (2008).

    CAS  PubMed  Google Scholar 

  2. Tanaka, S., Sawaya, M. R. & Yeates, T. O. Structure and mechanisms of a protein-based organelle in Escherichia coli. Science 327, 81–84 (2010).

    CAS  PubMed  Google Scholar 

  3. Zhou, Z. H., McCarthy, D. B., O'Connor, C. M., Reed, L. J. & Stoops, J. K. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc. Natl Acad. Sci. USA 98, 14802–14807 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sutter, M. et al. Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nature Struct. Mol. Biol. 15, 939–947 (2008).

    CAS  Google Scholar 

  5. Cannon, G. C. et al. Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl. Environ. Microbiol. 67, 5351–5361 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shively, J. M., Ball, F., Brown, D. H. & Saunders, R. E. Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182, 584–586 (1973).

    CAS  PubMed  Google Scholar 

  7. Badger, M. R. & Price, G. D. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot. 54, 609–622 (2003).

    CAS  PubMed  Google Scholar 

  8. Zhang, X. et al. Multiple assembly states of lumazine synthase: a model relating catalytic function and molecular assembly. J. Mol. Biol. 362, 753–770 (2006).

    CAS  PubMed  Google Scholar 

  9. Crichton, R. R. Structure and function of ferritin. Angew. Chem. Int. Ed. Engl. 12, 57–65 (1973).

    CAS  PubMed  Google Scholar 

  10. Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489 (2005).

    CAS  PubMed  Google Scholar 

  11. Lee, B. Y. et al. Virus-based piezoelectric energy generation. Nature Nanotech. 7, 351–356 (2012).

    CAS  Google Scholar 

  12. Kang, S. & Douglas, T. Some enzymes just need a space of their own. Science 327, 42–43 (2010).

    CAS  PubMed  Google Scholar 

  13. Niu, Z. et al. Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett. 7, 3729–3733 (2007).

    CAS  PubMed  Google Scholar 

  14. Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

    CAS  PubMed  Google Scholar 

  15. Li, M., Harbron, R. L., Weaver, J. V., Binks, B. P. & Mann, S. Electrostatically gated membrane permeability in inorganic protocells. Nature Chem. 5, 529–536 (2013).

    CAS  Google Scholar 

  16. Fiedler, J. D., Brown, S. D., Lau, J. L. & Finn, M. G. RNA-directed packaging of enzymes within virus-like particles. Angew. Chem. Int. Ed. 49, 9648–9651 (2010).

    CAS  Google Scholar 

  17. Comellas-Aragones, M. et al. A virus-based single-enzyme nanoreactor. Nature Nanotech. 2, 635–639 (2007).

    CAS  Google Scholar 

  18. Wörsdörfer, B., Woycechowsky, K. J. & Hilvert, D. Directed evolution of a protein container. Science 331, 589–592 (2011).

    PubMed  Google Scholar 

  19. Inoue, T. et al. Engineering of SV40-based nano-capsules for delivery of heterologous proteins as fusions with the minor capsid proteins VP2/3. J. Biotechnol. 134, 181–192 (2008).

    CAS  PubMed  Google Scholar 

  20. Patterson, D. P., Prevelige, P. E. & Douglas, T. Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage P22. ACS Nano 6, 5000–5009 (2012).

    CAS  PubMed  Google Scholar 

  21. Patterson, D. P., Schwarz, B., Waters, R. S., Gedeon, T. & Douglas, T. Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem. Biol. 9, 359–365 (2014).

    CAS  PubMed  Google Scholar 

  22. Prevelige, P. E., Thomas, D. & King, J. Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J. Mol. Biol. 202, 743–757 (1988).

    CAS  PubMed  Google Scholar 

  23. Parker, M. H., Casjens, S. & Prevelige Jr, P. E. Functional domains of bacteriophage P22 scaffolding protein. J. Mol. Biol. 281, 69–79 (1998).

    CAS  PubMed  Google Scholar 

  24. Weigele, P. R., Sampson, L., Winn-Stapley, D. & Casjens, S. R. Molecular genetics of bacteriophage P22 scaffolding protein's functional domains. J. Mol. Biol. 348, 831–844 (2005).

    CAS  PubMed  Google Scholar 

  25. Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    CAS  PubMed  Google Scholar 

  26. Frey, M. Hydrogenases: hydrogen-activating enzymes. ChemBioChem 3, 153–160 (2002).

    CAS  PubMed  Google Scholar 

  27. Buurman, G., Shima, S. & Thauer, R. K. The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor. FEBS Lett. 485, 200–204 (2000).

    CAS  PubMed  Google Scholar 

  28. Volbeda, A. et al. X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Proc. Natl Acad. Sci. USA 109, 5305–5310 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lukey, M. J. et al. Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe–S cluster. J. Am. Chem. Soc. 133, 16881–16892 (2011).

    CAS  PubMed  Google Scholar 

  30. Krishnan, S. & Armstrong, F. A. Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures. Chem. Sci. 3, 1015–1023 (2012).

    CAS  Google Scholar 

  31. Friedrich, B., Fritsch, J. & Lenz, O. Oxygen-tolerant hydrogenases in hydrogen-based technologies. Curr. Opin. Biotechnol. 22, 358–364 (2011).

    CAS  PubMed  Google Scholar 

  32. Volbeda, A. et al. Crystal structure of the O2-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b. Structure 21, 184–190 (2013).

    CAS  PubMed  Google Scholar 

  33. Menon, N. K. et al. Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 operon containing six open reading frames. J. Bacteriol. 172, 1969–1977 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Volbeda, A. et al. Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J. Am. Chem. Soc. 118, 12989–12996 (1996).

    CAS  Google Scholar 

  35. Forzi, L., Hellwig, P., Thauer, R. K. & Sawers, R. G. The CO and CN ligands to the active site Fe in [NiFe]-hydrogenase of Escherichia coli have different metabolic origins. FEBS Lett. 581, 3317–3321 (2007).

    CAS  PubMed  Google Scholar 

  36. Hidalgo, R., Ash, P. A., Healy, A. J. & Vincent, K. A. Infrared spectroscopy during electrocatalytic turnover reveals the Ni–L active site state during H2 oxidation by a NiFe hydrogenase. Angew. Chem. Int. Ed. 127, 7216–7219 (2015).

    Google Scholar 

  37. Menon, N. K., Robbins, J., Wendt, J. C., Shanmugam, K. T. & Przybyla, A. E. Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J. Bacteriol. 173, 4851–4861 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dubini, A., Pye, R. L., Jack, R. L., Palmer, T. & Sargent, F. How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int. J. Hydrogen Energy 27, 1413–1420 (2002).

    CAS  Google Scholar 

  39. Forzi, L. & Sawers, R. G. Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals 20, 565–578 (2007).

    CAS  PubMed  Google Scholar 

  40. O'Neil, A., Reichhardt, C., Johnson, B., Prevelige, P. E. & Douglas, T. Genetically programmed in vivo packaging of protein cargo and its controlled release from bacteriophage P22. Angew. Chem. Int. Ed. 50, 7425–7428 (2011).

    CAS  Google Scholar 

  41. Hotz, J. & Meier, W. Vesicle-templated polymer hollow spheres. Langmuir 14, 1031–1036 (1998).

    CAS  Google Scholar 

  42. Egelhaaf, S. U. & Schurtenberger, P. Shape transformations in the lecithin–bile salt system: from cylinders to vesicles. J. Phys. Chem. 98, 8560–8573 (1994).

    CAS  Google Scholar 

  43. Soboh, B. et al. [NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins. Biochem. J. 464, 169–177 (2014).

    CAS  PubMed  Google Scholar 

  44. Murphy, B. J., Sargent, F. & Armstrong, F. A. Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient, reversible hydrogen producer. Energy Environ. Sci. 7, 1426–1433 (2014).

    CAS  Google Scholar 

  45. Hatchikian, E. C., Forget, N., Fernandez, V. M., Williams, R. & Cammack, R. Further characterization of the [Fe]-hydrogenase from Desulfovibrio desulfuricans ATCC 7757. Eur. J. Biochem. 209, 357–365 (1992).

    CAS  PubMed  Google Scholar 

  46. Lissolo, T., Pulvin, S. & Thomas, D. Reactivation of the hydrogenase from Desulfovibrio gigas by hydrogen. Influence of redox potential. J. Biol. Chem. 259, 11725–11729 (1984).

    CAS  PubMed  Google Scholar 

  47. Bélaich, J.-P., Bruschi, M. & Garcia, J.-L. Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer (Plenum, 1990).

    Google Scholar 

  48. Kim, J. Y., Jo, B. H. & Cha, H. J. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli. Microb. Cell Fact. 9, 54 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Sawers, R. G. & Boxer, D. H. Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12. Eur. J. Biochem. 156, 265–275 (1986).

    CAS  PubMed  Google Scholar 

  50. Swanson, K. D. et al. [FeFe]-hydrogenase oxygen inactivation is initiated at the H cluster 2Fe subcluster. J. Am. Chem. Soc. 137, 1809–1816 (2015).

    CAS  PubMed  Google Scholar 

  51. O'Neil, A., Prevelige, P. E. & Douglas, T. Stabilizing viral nano-reactors for nerve-agent degradation. Biomater. Sci. 1, 881–886 (2013).

    CAS  PubMed  Google Scholar 

  52. Kang, S. & Prevelige, P. E. Jr. Domain study of bacteriophage P22 coat protein and characterization of the capsid lattice transformation by hydrogen/deuterium exchange. J. Mol. Biol. 347, 935–948 (2005).

    CAS  PubMed  Google Scholar 

  53. Hartman, D. J., Surin, B. P., Dixon, N. E., Hoogenraad, N. J. & Hoj, P. B. Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro. Proc. Natl Acad. Sci. USA 90, 2276–2280 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, D.-H. et al. Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proc. Natl Acad. Sci. USA 108, 1355–1360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun, Y. et al. Structure of the coat protein-binding domain of the scaffolding protein from a double-stranded DNA virus. J. Mol. Biol. 297, 1195–1202 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DE-FG02-08ER46537). The authors acknowledge the gift of EcHyd-1 antibodies from F. Sargent (University of Dundee).

Author information

Authors and Affiliations

Authors

Contributions

P.C.J., D.P.P. and T.D. conceived the concept. P.J. designed and carried out the experiments. K.N.S. assisted in characterization. E.J.E. assisted with TEM and ICP-MS. H.M.M. assisted in molecular biology. M.C.T. supervised the spectroscopy. P.J. and T.D. wrote the manuscript. T.D. directed the research. All authors discussed the results.

Corresponding author

Correspondence to Trevor Douglas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jordan, P., Patterson, D., Saboda, K. et al. Self-assembling biomolecular catalysts for hydrogen production. Nature Chem 8, 179–185 (2016). https://doi.org/10.1038/nchem.2416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2416

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research