Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

End-to-end conformational communication through a synthetic purinergic receptor by ligand-induced helicity switching

Abstract

The long-range communication of information, exemplified by signal transduction through membrane-bound receptors, is a central biochemical function. Reversible binding of a messenger ligand induces a local conformational change that is relayed through the receptor, inducing a chemical effect typically several nanometres from the binding site. We report a synthetic receptor mimic that transmits structural information from a boron-based ligand binding site to a spectroscopic reporter located more than 2 nm away. Reversible binding of a diol ligand to the N-terminal binding site induces a screw-sense preference in a helical oligo(aminoisobutyric acid) foldamer, which is relayed to a reporter group at the remote C-terminus, communicating information about the structure and stereochemistry of the ligand. The reversible nature of boronate esterification was exploited to switch the receptor sequentially between left- and right-handed helices, while the exquisite conformational sensitivity of the helical relay allowed the reporter to differentiate even between purine and pyrimidine nucleosides as ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Remote detection of ligand binding to a synthetic receptor by NMR spectroscopy.
Figure 2: Synthesis of boronate-capped receptors used in this study.
Figure 3: Probing ligand-induced conformational control by NMR spectroscopy.
Figure 4: Dynamic switching of screw-sense preference.
Figure 5: Screw-sense control using ribonucleosides as ligands.

Similar content being viewed by others

References

  1. Perutz, M. in Mechanisms of Cooperativity and Allosteric Regulation in Proteins (Cambridge Univ. Press, 1990).

    Google Scholar 

  2. Krauss, G. in Biochemistry of Signal Transduction and Regulation (Wiley-VCH, 1999).

    Google Scholar 

  3. Fowler, S. A. & Blackwell, H. E. Structure–function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org. Biomol. Chem. 7, 1508–1524 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wittung, P., Nielsen, P. E., Buchardt, O., Egholm, M. & Norden, B. DNA-like double helix formed by peptide nucleic acid. Nature 368, 561–563 (1994).

    CAS  PubMed  Google Scholar 

  5. Dervan, P. B. Molecular recognition of DNA by small molecules. Bioorgan. Med. Chem. 9, 2215–2235 (2001).

    CAS  Google Scholar 

  6. Goodchild, J. in Therapeutic Oligonucleotides Vol. 764 (ed. Goodchild, J.) Ch. 1, 1–15 (Humana Press, 2011).

    Google Scholar 

  7. Riddle, J. A., Jiang, X. & Lee, D. Conformational dynamics for chemical sensing: simplicity and diversity. Analyst 133, 417–422 (2008).

    CAS  PubMed  Google Scholar 

  8. Krauss, R., Weinig, H-G., Seydack, M., Bendig, J. & Koert, U. Molecular signal transduction through conformational transmission of a perhydroanthracene transducer. Angew. Chem. Int. Ed. 39, 1835–1837 (2000).

    CAS  Google Scholar 

  9. Ousaka, N. & Inai, Y. Transfer of noncovalent chiral information along an optically inactive helical peptide chain: allosteric control of asymmetry of the C-terminal site by external molecule that binds to the N-terminal site. J. Org. Chem. 74, 1429–1439 (2009).

    CAS  PubMed  Google Scholar 

  10. Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. A field guide to foldamers. Chem. Rev. 101, 3893–4012 (2001).

    CAS  Google Scholar 

  11. Hecht, S. & Huc, I. in Foldamers (Wiley, 2007).

    Google Scholar 

  12. Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).

    CAS  Google Scholar 

  13. Nakano, T. & Okamoto, Y. Synthetic helical polymers: conformation and function. Chem. Rev. 101, 4013–4038 (2001).

    CAS  PubMed  Google Scholar 

  14. Green, M. M. et al. Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. J. Am. Chem. Soc. 111, 6452–6454 (1989).

    Google Scholar 

  15. Green, M. M. et al. A helical polymer with a cooperative response to chiral information. Science 268, 1860–1866 (1995).

    CAS  PubMed  Google Scholar 

  16. Yashima, E., Matsushima, T. & Okamoto, Y. Poly((4-carboxyphenyl)acetylene) as a probe for chirality assignment of amines by circular dichroism. J. Am. Chem. Soc. 117, 11596–11597 (1995).

    CAS  Google Scholar 

  17. Schlitzer, D. S. & Novak, B. M. Trapped kinetic states, chiral amplification and molecular chaperoning in synthetic polymers: chiral induction in polyguanidines through ion pair interactions. J. Am. Chem. Soc. 120, 2196–2197 (1998).

    CAS  Google Scholar 

  18. Clayden, J., Castellanos, A., Solà, J. & Morris, G. A. Quantifying end-to-end conformational communication of chirality through an achiral peptide chain. Angew. Chem. Int. Ed. 48, 5962–5965 (2009).

    CAS  Google Scholar 

  19. Dolain, C., Jiang, H., Léger, J-M., Guionneau, P. & Huc, I. Chiral induction in quinoline-derived oligoamide foldamers: assignment of helical handedness and role of steric effects. J. Am. Chem. Soc. 127, 12943–12951 (2005).

    CAS  PubMed  Google Scholar 

  20. Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed. 46, 3693–3696 (2007).

    CAS  Google Scholar 

  21. Ousaka, N., Takeyama, Y., Iida, H. & Yashima, E. Chiral information harvesting in dendritic metallopeptides. Nature Chem. 3, 856–861 (2011).

    CAS  Google Scholar 

  22. Ousaka, N., Takeyama, Y. & Yashima, E. Anion-driven reversible switching of metal-centered stereoisomers in metallopeptides. Chem. Eur. J. 19, 4680–4685 (2013).

    CAS  PubMed  Google Scholar 

  23. Solà, J., Fletcher, S. P., Castellanos, A. & Clayden, J. Nanometer-range communication of stereochemical information by reversible switching of molecular helicity. Angew. Chem. Int. Ed. 49, 6836–6839 (2010).

    Google Scholar 

  24. Miyake, H. & Tsukube, H. Coordination chemistry strategies for dynamic helicates: time-programmable chirality switching with labile and inert metal helicates. Chem. Soc. Rev. 41, 6977–6991 (2012).

    CAS  PubMed  Google Scholar 

  25. Crassous, J. Transfer of chirality from ligands to metal centers: recent examples. Chem. Commun. 48, 9687–9695 (2012).

    Google Scholar 

  26. Zhang, D-W., Zhao, X., Hou, J-L. & Li, Z-T. Aromatic amide foldamers: structures, properties, and functions. Chem. Rev. 112, 5271–5316 (2012).

    CAS  PubMed  Google Scholar 

  27. Miyake, H., Kamon, H., Miyahara, I., Sugimoto, H. & Tsukube, H. Time-programmed peptide helix inversion of a synthetic metal complex triggered by an achiral NO3 anion. J. Am. Chem. Soc. 130, 792–793 (2007).

    Google Scholar 

  28. Clayden, J. Transmission of stereochemical information over nanometre distances in chemical reactions. Chem. Soc. Rev. 38, 817–829 (2009).

    CAS  PubMed  Google Scholar 

  29. James, T. D., Samankumara Sandanayake, K. R. A. & Shinkai, S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 374, 345–347 (1995).

    CAS  Google Scholar 

  30. James, T. D., Phillips, M. D. & Shinkai, S. in Boronic Acids in Saccharide Recognition (Royal Society of Chemistry, 2006).

    Google Scholar 

  31. Dowlut, M. & Hall, D. G. An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J. Am. Chem. Soc. 128, 4226–4227 (2006).

    CAS  PubMed  Google Scholar 

  32. Venkatraman, J., Shankaramma, S. C. & Balaram, P. Design of folded peptides. Chem. Rev. 101, 3131–3152 (2001).

    CAS  PubMed  Google Scholar 

  33. Toniolo, C. & Benedetti, E. The polypeptide 310-helix. Trends Biochem. Sci. 16, 350–353 (1991).

    CAS  PubMed  Google Scholar 

  34. Hummel, R-P., Toniolo, C. & Jung, G. Conformational transitions between enantiomeric 310-helices. Angew. Chem. Int. Ed. 26, 1150–1152 (1987).

    Google Scholar 

  35. Solà, J., Morris, G. A. & Clayden, J. Measuring screw-sense preference in a helical oligomer by comparison of 13C NMR signal separation at slow and fast exchange. J. Am. Chem. Soc. 133, 3712–3715 (2011).

    PubMed  Google Scholar 

  36. Boddaert, T., Sola, J., Helliwell, M. & Clayden, J. Chemical communication: conductors and insulators of screw-sense preference between helical oligo(aminoisobutyric acid) domains. Chem. Commun. 48, 3397–3399 (2012).

    CAS  Google Scholar 

  37. Fletcher, S. P., Solà, J., Holt, D., Brown, R. A. & Clayden, J. Synthesis of enantiomerically enriched (R)-13C-labelled 2-aminoisobutyric acid (Aib) by conformational memory in the alkylation of a derivative of L-alanine. Beilstein J. Org. Chem. 7, 1304–1309 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiskur, S. L. et al. pK a Values and geometries of secondary and tertiary amines complexed to boronic acids—implications for sensor design. Org. Lett. 3, 1311–1314 (2001).

    CAS  PubMed  Google Scholar 

  39. James, T. in Creative Chemical Sensor Systems Vol. 277 (ed. Schrader, T.) Ch. 110, 107–152 (Springer, 2007).

    Google Scholar 

  40. Zhu, L. et al. A structural investigation of the N–B interaction in an o-(N,N-dialkylaminomethyl)arylboronate system. J. Am. Chem. Soc. 128, 1222–1232 (2006).

    CAS  PubMed  Google Scholar 

  41. Collins, B. E. et al. Probing intramolecular B–N interactions in ortho-aminomethyl arylboronic acids. J. Org. Chem. 74, 4055–4060 (2009).

    CAS  PubMed  Google Scholar 

  42. Collins, B. E., Metola, P. & Anslyn, E. V. On the rate of boronate ester formation in ortho-aminomethyl-functionalised phenyl boronic acids. Supramol. Chem. 25, 79–86 (2012).

    Google Scholar 

  43. Pengo, P. et al. Quantitative correlation of solvent polarity with the α-/310-helix equilibrium: a heptapeptide behaves as a solvent-driven molecular spring. Angew. Chem. Int. Ed. 42, 3388–3392 (2003).

    CAS  Google Scholar 

  44. Roy, C. D. & Brown, H. C. A comparative study of the relative stability of representative chiral and achiral boronic esters employing transesterification. Monatsh. Chem. 138, 879–887 (2007).

    CAS  Google Scholar 

  45. Brown, R. A., Marcelli, T., De Poli, M., Solà, J. & Clayden, J. Induction of unexpected left-handed helicity by an N-terminal L-amino acid in an otherwise achiral peptide chain. Angew. Chem. Int. Ed. 51, 1395–1399 (2012).

    CAS  Google Scholar 

  46. Lewis, B. A. & Engelman, D. M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217 (1983).

    CAS  PubMed  Google Scholar 

  47. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jaakola, V-P. & Ijzerman, A. P. The crystallographic structure of the human adenosine A2A receptor in a high-affinity antagonist-bound state: implications for GPCR drug screening and design. Curr. Opin. Struct. Biol. 20, 401–414 (2010).

    CAS  PubMed  Google Scholar 

  49. Takeuchi, M., Taguchi, M., Shinmori, H. & Shinkai, S. Molecular design of boronic acid-based dye receptors for nucleosides. Bull. Chem. Soc. Jpn 69, 2613–2618 (1996).

    CAS  Google Scholar 

  50. Kobayashi, H., Amaike, M., Koumoto, K. & Shinkai, S. Organization of nucleosides supported by boronic-acid-appended poly(L-lysine): creation of a novel RNA mimic. Bull. Chem. Soc. Jpn 74, 1311–1317 (2001).

    CAS  Google Scholar 

  51. Jiang, S. et al. Stereochemical and regiochemical trends in the selective detection of saccharides. J. Am. Chem. Soc. 128, 12221–12228 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Duggan, P. J. & Offermann, D. A. Remarkably selective saccharide recognition by solid-supported peptide boronic acids. Tetrahedron 65, 109–114 (2009).

    CAS  Google Scholar 

  53. Cai, S. X. & Keana, J. F. W. o-Acetamidophenylboronate esters stabilized toward hydrolysis by an intramolecular O–B interaction: potential linkers for selective bioconjugation via vicinal diol moieties of carbohydrates. Bioconj. Chem. 2, 317–322 (1991).

    CAS  Google Scholar 

  54. Toniolo, C. & Bruckner, H. E. in Peptaibiotics (Wiley-VCH, 2009).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Biotechnology and Biological Sciences Research Council through a Research Grant (I007962) and a Doctoral Training Grant studentship. The authors thank T. Wallace for donating samples of 6c, 6e and 6f. The authors acknowledge the Engineering and Physical Sciences Research Council National Mass Spectrometry Centre for performing high-resolution mass spectrometry measurements.

Author information

Authors and Affiliations

Authors

Contributions

R.A.B., S.J.W. and J.C. conceived and designed the project. R.A.B. and V.D. designed and executed the synthesis of the receptors. R.A.B. performed the analytical studies. R.A.B., S.J.W. and J.C. wrote the paper.

Corresponding authors

Correspondence to Simon J. Webb or Jonathan Clayden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, R., Diemer, V., Webb, S. et al. End-to-end conformational communication through a synthetic purinergic receptor by ligand-induced helicity switching. Nature Chem 5, 853–860 (2013). https://doi.org/10.1038/nchem.1747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing