Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A backbone lever-arm effect enhances polymer mechanochemistry

Abstract

Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of gDHC functionalized polymers used in this work.
Figure 2: Representative force–extension curves showing that the plateau force is more sensitive to the polymer backbone (a versus c and b versus d) than to the halogen (a versus b and c versus d).
Figure 3: Plots of measured polymer extensions versus fractional gDHC content, showing that the extensions are due to the reactivity of the gDHC mechanophores.
Figure 4: Calculated distortion of the local reaction coordinate (C–C distance) d in a polymer triad as a function of applied force for different polymer backbones.

Similar content being viewed by others

References

  1. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    Article  CAS  Google Scholar 

  2. Lenhardt, J. M. et al. Reactive cross-talk between adjacent tension-trapped transition states. J. Am. Chem. Soc. 113, 3222–3225 (2011).

    Article  Google Scholar 

  3. Lenhardt, J. M. et al. Trapping a diradical transition state by mechanochemical polymer extension. Science 329, 1057–1060 (2010).

    Article  CAS  Google Scholar 

  4. Brantley, J. N., Wiggins, K. M. & Bielawaski, C. W. Unclicking the click: mechanically facilitated 1,3-dipolar cycloreversions. Science 333, 1606–1609 (2011).

    Article  CAS  Google Scholar 

  5. Wiggins, K. M. & Bielawaski, C. W. A mechanochemical approach to deracemization. Angew. Chem. Int. Ed. 51, 1640–1643 (2012).

    Article  CAS  Google Scholar 

  6. Piermattei, A., Karthikeyan, S. & Sijbesma, R. P. Activating catalysts with mechanical force. Nature Chem. 1, 133–137 (2009).

    Article  CAS  Google Scholar 

  7. Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009).

    Article  CAS  Google Scholar 

  8. Chen, Y. et al. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nature Chem. 4, 559–562 (2012).

    Article  CAS  Google Scholar 

  9. Black, A. L., Lenhardt, J. M. & Craig, S. L. From molecular mechanochemistry to stress-responsive materials. J. Mater. Chem. 21, 1655–1663 (2011).

    Article  CAS  Google Scholar 

  10. Black, A. L., Orlicki, J. A. & Craig, S. L. Mechanochemically triggered bond formation in solid-state polymers. J. Mater. Chem. 21, 8460–8465 (2011).

    Article  CAS  Google Scholar 

  11. Caruso, M. M. et al. Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 109, 5755–5798 (2009).

    Article  CAS  Google Scholar 

  12. Lenhardt, J. M. et al. Characterizing the mechanochemically active domains in gem-dihalocyclopropanated polybutadiene under compression and tension. J. Mater. Chem. 21, 8454–8459 (2011).

    Article  CAS  Google Scholar 

  13. Tian, Y. & Boulatov, R. Quantum-chemical validation of the local assumption of chemomechanics for a unimolecular reaction. ChemPhysChem 13, 2277–2281 (2012).

    Article  CAS  Google Scholar 

  14. Ribas-Arino, J., Shiga, M. & Marx, D. Mechanochemical transduction of externally applied forces to mechanophores. J. Am. Chem. Soc. 132, 10609–10614 (2010).

    Article  CAS  Google Scholar 

  15. Kryger, M. J., Munaretto, A. M. & Moore, J. S. Structure–mechanochemical activity relationships for cyclobutane mechanophores. J. Am. Chem. Soc. 133, 18992–18998 (2011).

    Article  CAS  Google Scholar 

  16. Lenhardt, J. M., Black, A. L. & Craig, S. L. gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J. Am. Chem. Soc. 131, 10818–10819 (2009).

    Article  CAS  Google Scholar 

  17. Brantley, J. N., Konda, S. S. M., Makarov, D. E. & Bielawaski, C. W. Regiochemical effects on molecular stability: a mechanochemical evaluation of 1,4- and 1,5-disubstituted triazoles. J. Am. Chem. Soc. 134, 9882–9885 (2012).

    Article  CAS  Google Scholar 

  18. Yang, Q-Z. et al. A molecular force probe. Nature Nanotech. 4, 302–306 (2009).

    Article  CAS  Google Scholar 

  19. Sheiko, S. S. et al. Adsorption-induced scission of carbon–carbon bonds. Nature 440, 191–194 (2006).

    Article  CAS  Google Scholar 

  20. Ong, M. T., Leiding, J., Tao, H., Virshup, A. & Martinez, T. J. First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. J. Am. Chem. Soc. 131, 6377–6379 (2009).

    Article  CAS  Google Scholar 

  21. Ribas-Arino J., Shiga M. & Marx D. Understanding covalent mechanochemistry. Angew. Chem. Int. Ed. 48, 4190–4193 (2009).

    Article  CAS  Google Scholar 

  22. Konda, S. S. M., Brantley, J. N., Bielawaski, C. W. & Makarov, D. E. Chemical reactions modulated by mechanical stress: extended Bell theory. J. Chem. Phys. 135, 164103 (2011).

    Article  Google Scholar 

  23. Garcia-Manyes, S., Liang, J., Szoszkiewicz, R., Kuo, T-L. & Fernandez, J. M. Force-activated reactivity switch in a bimolecular chemical reaction. Nature Chem. 1, 236–242 (2009).

    Article  CAS  Google Scholar 

  24. Alegre-Cebollada, J., Kosuri, P., Rivas-Pardo, J. A. & Fernandez, J. M. Direct observation of disulfide isomerization in a single protein. Nature Chem. 3, 882–887 (2011).

    Article  CAS  Google Scholar 

  25. Garcia-Manyes, S., Kuo, T-L. & Fernandez, J. M. Contrasting the individual reactive pathways in protein unfolding and disulfide bond reduction observed within a single protein. J. Am. Chem. Soc. 133, 3104–3113 (2011).

    Article  CAS  Google Scholar 

  26. Kersey, F. R., Yount, W. C. & Craig, S. L. Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J. Am. Chem. Soc. 128, 3886–3887 (2006).

    Article  CAS  Google Scholar 

  27. Wu, D., Lenhardt, J. M., Black, A. L., Akhremitchev, B. B. & Craig, S. L. Molecular stress relief through a force-induced irreversible extension in polymer contour length. J. Am. Chem. Soc. 132, 15936–15938 (2010).

    Article  CAS  Google Scholar 

  28. Akbulatov, S., Tian, Y. & Boulatov, R. Force-reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J. Am. Chem. Soc. 134, 7620–7623 (2012).

    Article  CAS  Google Scholar 

  29. Dopieralski, P. et al. On the role of polymer chains in transducing external mechanical forces to benzocyclobutene mechanophores. J. Mater. Chem. 21, 8309–8316 (2011).

    Article  CAS  Google Scholar 

  30. Ribas-Arino, J., Shiga, M. & Marx, D. Mechanochemical transduction of externally applied forces to mechanophores. J. Am. Chem. Soc. 132, 10609–10614 (2010).

    Article  CAS  Google Scholar 

  31. Klukovich, H. M. et al. Tension trapping of carbonyl ylides facilitated by a change in polymer backbone. J. Am. Chem. Soc. 134, 9577–9580 (2012).

    Article  CAS  Google Scholar 

  32. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  33. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  34. Evans, E. Probing the relation between force lifetime and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  35. Ray, C., Brown, J. R. & Akhremitchev, B. B. Correction of systematic errors in single-molecule force spectroscopy with polymeric tethers by atomic force microscopy. J. Phys. Chem. B 111, 1963–1974 (2007).

    Article  CAS  Google Scholar 

  36. Dobrynin, A. V., Carrillo, J-M. Y. & Rubinstein, M. Chains are more flexible under tension. Macromolecules 43, 9181–9190 (2010).

    Article  CAS  Google Scholar 

  37. Duffey, D. C., Minyard, J. P. & Lane, R. H. Thermal rearrangement of 1,1-dibromo-cis-2,3-dimethylcyclopropane. J. Org. Chem. 31, 3865–3867 (1966).

    Article  CAS  Google Scholar 

  38. Faza, O. N., Lopez, C. S., Alvarez, R. & de Lera, A. R. Solvolytic ring opening reactions of cyclopropyl bromides. An assessment of the Woodward–Hoffmann–dePuy rule. J. Org. Chem. 69, 9002–9010 (2004).

    Article  Google Scholar 

  39. Boulatov, R. Reaction dynamics in the formidable gap. Pure Appl. Chem. 83, 25–41 (2011).

    Article  CAS  Google Scholar 

  40. Hummer, G. & Szabo, A. Free energy profiles from single-molecule pulling experiments. Proc. Natl Acad. Sci. USA 107, 21441–21445 (2010).

    Article  CAS  Google Scholar 

  41. Hummer, G. & Szabo, A. Kinetics from nonequilibrium single-molecule pulling experiments. Biophys. J. 85, 5–15 (2003).

    Article  CAS  Google Scholar 

  42. Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).

    Article  Google Scholar 

  43. Wiita, A. P., Ainavarapu, S. R. K., Huang, H. H. & Fernandez, J. M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl Acad. Sci. USA 103, 7222–7227 (2006).

    Article  CAS  Google Scholar 

  44. Huang, Z. et al. Method to derive restoring forces of strained molecules from kinetic measurments. J. Am. Chem. Soc. 131, 1407–1409 (2009).

    Article  CAS  Google Scholar 

  45. Dopieralski, P., Ribas-Arino, J. & Marx, D. Force-transformed free-energy surfaces and trajectory-shooting simulations reveal the mechano-stereochemistry of cyclopropane ring-opening reactions. Angew. Chem. Int. Ed. 50, 7105–7108 (2011).

    Article  CAS  Google Scholar 

  46. Beyer, M. K. The mechanical strength of a covalent bond calculated by density functional theory. J. Chem. Phys. 112, 7307–7312 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the US Army Research Laboratory and the Army Research Office (grant no. W911NF-07-1-0409) and the National Science Foundation (DMR-1122483). The authors thank B. Akhremitchev for providing the original force–extension modelling code.

Author information

Authors and Affiliations

Authors

Contributions

H.M.K and S.L.C. conceived and designed the experiments. H.M.K. and J.M.L. performed the synthesis. T.B.K. collected the AFM data. H.M.K., T.B.K. and S.L.C. analysed the data. Z.S.K. contributed modelling data. H.M.K. and S.L.C. wrote the manuscript.

Corresponding author

Correspondence to Stephen L. Craig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1829 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klukovich, H., Kouznetsova, T., Kean, Z. et al. A backbone lever-arm effect enhances polymer mechanochemistry. Nature Chem 5, 110–114 (2013). https://doi.org/10.1038/nchem.1540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing