Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein camouflage in cytochrome c–calixarene complexes

Abstract

Small molecules that recognize protein surfaces are important tools for modifying protein interaction properties. Since the 1980s, several thousand studies concerning calixarenes and host–guest interactions have been published. Although there is growing interest in protein–calixarene interactions, only limited structural information has been available to date. We now report the crystal structure of a protein–calixarene complex. The water-soluble p-sulfonatocalix[4]arene is shown to bind the lysine-rich cytochrome c at three different sites. Binding curves obtained from NMR titrations reveal an interaction process that involves two or more binding sites. Together, the data indicate a dynamic complex in which the calixarene explores the surface of cytochrome c. In addition to providing valuable information on protein recognition, the data also indicate that the calixarene is a mediator of protein–protein interactions, with potential applications in generating assemblies and promoting crystallization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NMR spectroscopic characterization of the sclx4 binding surface on cytochrome c.
Figure 2: Binding isotherms for the cytochrome c–sclx4 interaction determined by NMR spectroscopy.
Figure 3: Crystal structure of the cytochrome c–sclx4 complex.
Figure 4: Sclx4 explores and camouflages the surface of cytochrome c.

Similar content being viewed by others

References

  1. Zorn, J. A. & Wells, J. A. Turning enzymes on with small molecules. Nature Chem. Biol. 6, 179–188 (2010).

    Article  CAS  Google Scholar 

  2. Zhou, H., Baldini, L., Hong, J., Wilson, A. J. & Hamilton, A. D. Pattern recognition of proteins based on an array of functionalized porphyrins. J. Am. Chem. Soc. 128, 2421–2425 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Larson, S. B., Day, J. S., Cudney, R. & McPherson, A. A novel strategy for the crystallization of proteins: X-ray diffraction validation. Acta Crystallogr. D 63, 310–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Ernst, J. T., Becerril, J., Park, H. S., Yin, H. & Hamilton, A. D. Design and application of an alpha-helix-mimetic scaffold based on an oligoamide-foldamer strategy: antagonism of the Bak BH3/Bcl-xL complex. Angew. Chem. Int. Ed. 42, 535–539 (2003).

    Article  CAS  Google Scholar 

  5. Lin, Q., Park, H. S., Hamuro, Y., Lee, C. S. & Hamilton, A. D. Protein surface recognition by synthetic agents: design and structural requirements of a family of artificial receptors that bind to cytochrome c. Biopolymers 47, 285–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Crowley, P. B., Ganji, P. & Ibrahim, H. Protein surface recognition: structural characterisation of cytochrome c–porphyrin complexes. ChemBioChem 9, 1029–1033 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Renner, C., Piehler, J. & Schrader, T. Arginine- and lysine-specific polymers for protein recognition and immobilization. J. Am. Chem. Soc. 128, 620–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Ingerman, L. A., Cuellar, M. E. & Waters, M. L. A small molecule receptor that selectively recognizes trimethyl lysine in a histone peptide with native protein-like affinity. Chem. Commun. 46, 1839–1841 (2010).

    Article  CAS  Google Scholar 

  9. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coleman, A. W. et al. Novel layer structure of sodium calix[4]arenesulfonate complexes—a class of organic clay mimics. Angew. Chem. Int. Ed. 27, 1361–1362 (1988).

    Article  Google Scholar 

  11. Selkti, M. et al. The first example of a substrate spanning the calix[4]arene bilayer: the solid state complex of p-sulfonatocalix[4]arene with L-lysine. Chem. Commun. 2, 161–162 (2000).

    Article  Google Scholar 

  12. Atwood, J. L., Ness, T., Nichols, P. J. & Raston, C. L. Confinement of amino acids in tetra-p-sulfonated calix[4]arene bilayers. Cryst. Growth Des. 2, 171–176 (2002).

    Article  CAS  Google Scholar 

  13. Arena, G. et al. Inclusion of naturally occurring amino acids in water soluble calix[4]arenes: a microcalorimetric and 1H NMR investigation supported by molecular modeling. Org. Biomol. Chem. 4, 243–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Gordo, S. et al. Stability and structural recovery of the tetramerization domain of p53–R337H mutant induced by a designed templating ligand. Proc. Natl Acad. Sci. USA 105, 16426–16431 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martos, V. et al. Molecular recognition and self-assembly special feature: calix[4]arene-based conical-shaped ligands for voltage-dependent potassium channels. Proc. Natl Acad. Sci. USA 106, 10482–10486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Danylyuk, O. & Suwinska, K. Solid-state interactions of calixarenes with biorelevant molecules. Chem. Commun. 39, 5799–5813 (2009).

    Article  CAS  Google Scholar 

  17. Beshara, C. S., Jones, C. E., Daze, K. D., Lilgert, B. J. & Hof, F. A simple calixarene recognizes post-translationally methylated lysine. ChemBioChem 11, 63–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Perret, F. & Coleman, A. W. Biochemistry of anionic calix[n]arenes. Chem. Commun. 47, 7303–7319 (2011).

    Article  CAS  Google Scholar 

  19. Louie, G. V. & Brayer, G. D. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J. Mol. Biol. 214, 527–555 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Beissenhirtz, M. K. et al. Electroactive cytochrome c multilayers within a polyelectrolyte assembly. Angew. Chem. Int. Ed. 43, 4357–4360 (2004).

    Article  CAS  Google Scholar 

  21. Zadmard, R. & Schrader, T. Nanomolar protein sensing with embedded receptor molecules. J. Am. Chem. Soc. 127, 904–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Lange, C. & Hunte, C. Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc. Natl Acad. Sci. USA 99, 2800–2805 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crowley, P. B. & Carrondo, M. A. The architecture of the binding site in redox protein complexes: implications for fast dissociation. Proteins 55, 603–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Volkov, A. N., Bashir, Q., Worrall, J. A. R., Ullmann, G. M. & Ubbink, M. Shifting the equilibrium between the encounter state and the specific form of a protein complex by interfacial point mutations. J. Am. Chem. Soc. 132, 11487–11495 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Crowley, P. B., Chow, E. & Papkovskaia, T. Protein interactions in the Escherichia coli cytosol: an impediment to in-cell NMR spectroscopy. ChemBioChem 12, 1043–1048 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Assfalg, M., Bertini, I., Del Conte, R., Giachetti, A. & Turano, P. Cytochrome c and organic molecules: solution structure of the p-aminophenol adduct. Biochemistry 46, 6232–6238 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Patriarca, A. et al. ATP acts as a regulatory effector in modulating structural transitions of cytochrome c: implications for apoptotic activity. Biochemistry 48, 3279–3287 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Hill, M. M., Adrain, C., Duriez, P. J., Creagh, E. M. & Martin, S. J. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J. 23, 2134–2145 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallivan, J. P. & Dougherty, D. Cation–π interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fucke, K. et al. The structure of water in p-sulfonatocalix[4]arene. Chemistry 17, 10259–10271 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Hendsch, Z. S. & Tidor, B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 3, 211–226 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Søndergaard, C. R., Garrett, A. E., Carstensen, T., Pollastri, G. & Nielsen, J. E. Structural artifacts in protein–ligand X-ray structures: implications for the development of docking scoring functions. J. Med. Chem. 52, 5673–5684 (2009).

    Article  PubMed  CAS  Google Scholar 

  34. Janin, J., Bahadur, R. P. & Chakrabarti, P. Protein–protein interaction and quaternary structure. Q. Rev. Biophys. 41, 133–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Weimann, D. P., Winkler, H. D., Falenski, J. A., Koksch, B. & Schalley, C. A. Highly dynamic motion of crown ethers along oligolysine peptide chains. Nature Chem. 1, 573–577 (2009).

    Article  CAS  Google Scholar 

  36. Chinai, J. M. et al. Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc. 133, 8810–8813 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oshima, T., Goto, M. & Furusaki, S. Complex formation of cytochrome c with a calixarene carboxylic acid derivative: a novel solubilization method for biomolecules in organic media. Biomacromolecules 3, 438–444 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Paul, D. et al. Chemical activation of cytochrome c proteins via crown ether complexation: cold-active synzymes for enantiomer-selective sulfoxide oxidation in methanol. J. Am. Chem. Soc. 125, 11478–11479 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Oshima, T., Higuchi, H., Ohto, K., Inoue, K. & Goto, M. Selective extraction and recovery of cytochrome c by liquid–liquid extraction using a calix[6]arene carboxylic acid derivative. Langmuir 21, 7280–7284 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Morgan, H. P. et al. An improved strategy for the crystallization of Leishmania mexicana pyruvate kinase. Acta Crystallogr. F 66, 215–218 (2010).

    Article  CAS  Google Scholar 

  41. Walter, T. S. et al. Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14, 1617–1622 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Derewenda, Z. S. & Vekilov, P. G. Entropy and surface engineering in protein crystallization. Acta Crystallogr. D 62, 116–124 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. Shinkai, S., Araki, K., Tsubaki, T., Arimura, T. & Manabe, O. New syntheses of calixarene-p-sulphonates and p-nitrocalixarenes. J. Chem. Soc. Perkin Trans. 1, 2297–2299 (1987).

    Article  Google Scholar 

  44. Volkov, A. N., Vanwetswinkel, S., Van de Water, K. & van Nuland, N. A. J. Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy. J. Biomol. NMR 52, 245–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Leslie, A. G. The integration of macromolecular diffraction data. Acta. Crystallogr. D 62, 48–57 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. Collaborative Computational Project Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nature Protoc. 3, 1171–1179 (2008).

    Article  CAS  Google Scholar 

  50. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta. Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NUI Galway (college scholarship to R.E.M., Millennium Fund grants to N.P. and P.B.C.) and Science Foundation Ireland (grants 07/IN.1/B975 to A.R.K. and 07/RFP/BICF236 to P.B.C.). The authors acknowledge the European Synchrotron Radiation Facility for beam time allocation, and the staff of beamline BM14 for assistance with data collection. The authors thank A. N. Volkov (Vrije Universiteit Brussel) for revised NMR assignments of cytochrome c and J. Donlon (NUI Galway) and S. S. Wijmenga (Radboud Universiteit Nijmegen) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.B.C. conceived and designed the experiments. R.E.M., H.F., A.R.K. and P.B.C. performed the experiments. R.E.M. and P.B.C. analysed the data. N.P.P. contributed the calixarene. P.B.C. wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Peter B. Crowley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 392 kb)

Supplementary Movie 1

Supplementary Movie 1 (WMV 1466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGovern, R., Fernandes, H., Khan, A. et al. Protein camouflage in cytochrome c–calixarene complexes. Nature Chem 4, 527–533 (2012). https://doi.org/10.1038/nchem.1342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing