Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological insulator nanostructures for near-infrared transparent flexible electrodes

Abstract

Topological insulators are an intriguing class of materials with an insulating bulk state and gapless Dirac-type edge/surface states. Recent theoretical work predicts that few-layer topological insulators are promising candidates for broadband and high-performance optoelectronic devices due to their spin-momentum-locked massless Dirac edge/surface states, which are topologically protected against all time-reversal-invariant perturbations. Here, we present the first experimental demonstration of near-infrared transparent flexible electrodes based on few-layer topological-insulator Bi2Se3 nanostructures epitaxially grown on mica substrates by means of van der Waals epitaxy. The large, continuous, Bi2Se3-nanosheet transparent electrodes have single Dirac cone surface states, and exhibit sheet resistances as low as ~330 Ω per square, with a transparency of more than 70% over a wide range of wavelengths. Furthermore, Bi2Se3-nanosheet transparent electrodes show high chemical and thermal stabilities as well as excellent mechanical durability, which may lead to novel optoelectronic devices with unique properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and spectroscopy characterization of the Bi2Se3 nanosheets on thin mica sheet substrates.
Figure 2: Structure characterization of the flexible Bi2Se3 nanosheets.
Figure 3: Electrical characterization of Bi2Se3 nanosheets on mica substrates.
Figure 4: Durability of the Bi2Se3 transparent electrode.

Similar content being viewed by others

References

  1. Hecht, D. S., Hu, L. & Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 1482–1513 (2011).

    Article  CAS  Google Scholar 

  2. Zhang, D. et al. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6, 1880–1886 (2006).

    Article  CAS  Google Scholar 

  3. Hu, L., Hecht, D. S. & Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513–2517 (2004).

    Article  CAS  Google Scholar 

  4. Wang, X., Zhi, L. & Muellen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).

    Article  CAS  Google Scholar 

  5. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  6. Ju, S. et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotech. 2, 378–384 (2007).

    Article  CAS  Google Scholar 

  7. Lee, J. Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).

    Article  CAS  Google Scholar 

  8. Wu, H. et al. Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes. J. Am. Chem. Soc. 133, 27–29 (2011).

    Article  CAS  Google Scholar 

  9. Kang, M. G. & Guo, L. J. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv. Mater. 19, 1391–1396 (2007).

    Article  CAS  Google Scholar 

  10. Mishra, S. K., Satpathy, S. & Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter 9, 461–470 (1997).

    Article  CAS  Google Scholar 

  11. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  Google Scholar 

  12. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  13. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  14. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article  Google Scholar 

  15. Qi, X. L., Hughes, T. L. & Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  Google Scholar 

  16. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  17. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    Article  CAS  Google Scholar 

  18. Zhang, Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Phys. 6, 584–588 (2010).

    Article  Google Scholar 

  19. Kou, X. F. et al. Epitaxial growth of high mobility Bi2Se3 thin films on CdS. Appl. Phys. Lett. 98, 242102 (2011).

    Article  Google Scholar 

  20. Peng, H. et al. Aharonov–Bohm interference in topological insulator nanoribbons. Nature Mater. 9, 225–229 (2010).

    Article  CAS  Google Scholar 

  21. Xiu, F. et al. Manipulating surface states in topological insulator nanoribbons. Nature Nanotech. 6, 216–221 (2011).

    Article  CAS  Google Scholar 

  22. Steinberg, H., Gardner, D. R., Lee, Y. S. & Jarillo-Herrero, P. Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett. 10, 5032–5036 (2010).

    Article  CAS  Google Scholar 

  23. Teweldebrhan, D., Goyal, V. & Balandin, A. A. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett. 10, 1209–1218 (2010).

    Article  CAS  Google Scholar 

  24. Zhang, X., Wang, J. & Zhang, S.-C. Topological insulators for high-performance terahertz to infrared applications. Phys. Rev. B 82, 245107 (2011).

    Article  Google Scholar 

  25. Wyckoff, R. W. G. Crystal Structures (Krieger, 1986).

  26. Dang, W., Peng, H., Li, H., Wang, P. & Liu, Z. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 10, 2870–2876 (2010).

    Article  CAS  Google Scholar 

  27. Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    Article  CAS  Google Scholar 

  28. LaForge, A. D. et al. Optical characterization of Bi2Se3 in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material. Phys. Rev. B 81, 125120 (2010).

    Article  Google Scholar 

  29. Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    Article  CAS  Google Scholar 

  30. Kong, D. et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3 . ACS Nano 5, 4698–4703 (2011).

    Article  CAS  Google Scholar 

  31. Nomura, K., Koshino, M. & Ryu, S. Topological delocalization of two-dimensional massless Dirac fermions. Phys. Rev. Lett. 99, 146806 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Y. Liu, D. S. Kong and X. L. Qi for helpful discussion. Thanks go to Q. Meng and Y. Gong for technical support with ITO sputtering. This work was financially supported by the National Science Foundation of China (nos 20973007, 20973013, 50821061, 21173004 and 11104003), the National Basic Research Program of China (nos 2012CB933404 and 2011CB921904). This work was financially sponsored by the Program for New Century Excellent Talents in universities (NCET) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, the State Education Ministry (SRF for ROCS, SEM). Y.L.C. and Z.X.S. acknowledge support from the Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-76SF00515).

Author information

Authors and Affiliations

Authors

Contributions

H.P. conceived and designed the experiments. H.P., W.D. and D.W. performed the synthesis, structural characterization, device fabrication, transport measurements and analyses. Y.L.C. preformed the ARPES measurements. J.C., D.W., W.Z. and H.L. assisted in experimental work. H.P. wrote the paper. H.P. and Z.F.L. supervised the project and finalized the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hailin Peng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1062 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, H., Dang, W., Cao, J. et al. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nature Chem 4, 281–286 (2012). https://doi.org/10.1038/nchem.1277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing