Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms

Abstract

Inhibitor of apoptosis (IAP) proteins suppress apoptosis and inhibit caspases. Several IAPs also function as ubiquitin-protein ligases. Regulators of IAP auto-ubiquitination, and thus IAP levels, have yet to be identified. Here we show that Head involution defective (Hid), Reaper (Rpr) and Grim downregulate Drosophila melanogaster IAP1 (DIAP) protein levels. Hid stimulates DIAP1 polyubiquitination and degradation. In contrast to Hid, Rpr and Grim can downregulate DIAP1 through mechanisms that do not require DIAP1 function as a ubiquitin-protein ligase. Observations with Grim suggest that one mechanism by which these proteins produce a relative decrease in DIAP1 levels is to promote a general suppression of protein translation. These observations define two mechanisms through which DIAP1 ubiquitination controls cell death: first, increased ubiquitination promotes degradation directly; second, a decrease in global protein synthesis results in a differential loss of short-lived proteins such as DIAP1. Because loss of DIAP1 is sufficient to promote caspase activation, these mechanisms should promote apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of DIAP1 results in Drice activation.
Figure 2: Expression of Hid or Rpr results in a loss of DIAP1 in Drosophila wing discs.
Figure 3: Expression of Hid, Rpr or Grim results in a loss of DIAP1 in the embryo.
Figure 4: Expression of Hid, Rpr or Grim does not influence DIAP1 transcript levels.
Figure 6: Hid stimulates DIAP1 polyubiquitination.
Figure 5: Hid-dependent downregulation of DIAP1 requires DIAP1 ubiquitin-protein ligase activity, but Rpr-dependent downregulation does not.
Figure 7: Hid induces a post-translational loss of DIAP1, whereas Grim causes a general suppression of translation.

Similar content being viewed by others

References

  1. Wyllie, A. H., Kerr, J. F. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Raff, M. C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Alnemri, E. S. et al. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Weil, M. et al. Constitutive expression of the machinery for programmed cell death. J. Cell Biol. 133, 1053–1059 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Miller, L. K. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9, 323–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Hay, B. A. Understanding IAP function and regulation: a view from Drosophila. Cell Death Differ. 7, 1045–1056 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, H. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem. 275, 26661–26664 (2000).

    CAS  PubMed  Google Scholar 

  11. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA 98, 8662–8667 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hay, B. A., Wassarman, D. A. & Rubin, G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154, 669–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fraser, A. G. & Evan, G. I. Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE. EMBO J. 16, 2805–2813 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Hay, B. A., Wolff, T. & Rubin, G. M. Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121–2129 (1994).

    CAS  PubMed  Google Scholar 

  17. Yokoyama, H. et al. A novel activation mechanism of caspase-activated DNase from Drosophila melanogaster. J. Biol. Chem. 275, 12978–12986 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Hawkins, C. J., Wang, S. L. & Hay, B. A. A cloning method to identify caspases and their regulators in yeast: identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1. Proc. Natl Acad. Sci. USA 96, 2885–2890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Meier, P., Silke, J., Leevers, S. J. & Evan, G. I. The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19, 598–611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hawkins, C. J. et al. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J. Biol. Chem. 275, 27084–27093 (2000).

    CAS  PubMed  Google Scholar 

  22. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589–597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moore, L. A., Broihier, H. T., Van Doren, M., Lunsford, L. B. & Lehmann, R. Identification of genes controlling germ cell migration and embryonic gonad formation in Drosophila. Development 125, 667–678 (1998).

    CAS  PubMed  Google Scholar 

  24. Quinn, L. M. et al. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J. Biol. Chem. 275, 40416–40424 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Dorstyn, L., Colussi, P. A., Quinn, L. M., Richardson, H. & Kumar, S. DRONC, an ecdysone-inducible Drosophila caspase. Proc. Natl Acad. Sci. USA 96, 4307–4312 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vernooy, S. Y. et al. Cell death regulation in Drosophila: conservation of mechanism and unique insights. J. Cell Biol. 150, F69–F76 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, J. W., Cocina, A. E., Chai, J., Hay, B. A. & Shi, Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol. Cell 8, 95–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Vucic, D., Kaiser, W. J. & Miller, L. K. Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by Drosophila proteins HID and GRIM. Mol. Cell. Biol. 18, 3300–3309 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wright, C. W. & Clem, R. J. Sequence requirements for hid binding and apoptosis regulation in the anti-apoptotic baculovirus inhibitor of apoptosis Op-IAP: Hid binds Op-IAP in a manner similar to Smac binding of XIAP. J. Biol. Chem. 277, 2454–2462 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, P., Lee, P., Otto, L. & Abrams, J. Apoptotic activity of REAPER is distinct from signaling by the tumor necrosis factor receptor 1 death domain. J. Biol. Chem. 271, 25735–25737 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Wing, J. P., Zhou, L., Schwartz, L. M. & Nambu, J. R. Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ. 5, 930–939 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Wing, J. P., Schwartz, L. M. & Nambu, J. R. The RHG motifs of Drosophila Reaper and Grim are important for their distinct cell death-inducing abilities. Mech. Dev. 102, 193–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Hershko, A. & Heller, H. Occurrence of a polyubiquitin structure in ubiquitin–protein conjugates. Biochem. Biophys. Res. Commun. 128, 1079–1086 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Fulda, S., Meyer, E. & Debatin, K. M. Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1- converting enzyme inhibitory protein expression. Cancer Res. 60, 3947–3956 (2000).

    CAS  PubMed  Google Scholar 

  35. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. & Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13, 3191–3197 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clemens, M. J., Bushell, M., Jeffrey, I. W., Pain, V. M. & Morley, S. J. Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ. 7, 603–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Han, K. & Manley, J. L. Functional domains of the Drosophila Engrailed protein. EMBO J. 12, 2723–2733 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muller, H. A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149–163 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Holley, C. L., Olson, R. R., Colon-Ramos, D. A., & Kornbluth, S. Reaper-mediated elimination of IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nature Cell Biol. DOI: 10.1038/ncb798.

  41. Ryoo, H.D., Bergmann, A., Gonen, H., Ciechanover, A. & Steller, H. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell Biol. DOI: 10.1038/ncb795.

  42. Hays, R., Wickline, L. & Cagan, R. Morgue mediates apoptosis in the Drosophila retina by promoting degradation of DIAP1. Nature Cell Biol. DOI: 10.1038/ncb794.

  43. Wing, J.P. et al. Drosophila Morgue is a novel F Box/ubiquitin conjugase domain protein important in grim-reaper mediated programmed cell death. Nature Cell Biol. DOI: 10.1038/ncb800.

  44. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosphila gene hid is a direct molecular target of Ras-dependent survival signalling. Cell 95, 331–341 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Deshaies lab for their assistance with initial ubiquitination assays and S. Kornbluth for providing the Rpr peptide, and for sharing unpublished observations. We also thank P.D. Zamore and members of his lab for providing the Drosophila embryo translation extract and translation protocols. We also thank G.M. Rubin and E. Kwan for the production of the anti-DIAP1 monoclonal antibody and K. White for th6 flies. This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft (MU1168/4-1) to H.-A.J.M. and grants from the Burroughs Wellcome Fund (New Investigator awards in the Pharmacological Sciences), the Ellison Medical Foundation, and a National Institutes of Health grant GM057422-01 to B.A.H. S.J.Y. was supported by a Jane Coffin Childs Postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H.-Arno J. Müller or Bruce A. Hay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Figure S1

DIAP1 and Dronc half-life in S2 cells. (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, S., Huh, J., Muro, I. et al. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4, 416–424 (2002). https://doi.org/10.1038/ncb793

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing